Wind trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

Find the first WEEKLY report (available 11 May 2020).

Weekly Update

Spring has sprung!

Equipment is moving in fields across the prairies this week.  In addition to the Weekly Update, the Insect of the Week is back for 2020’s growing season.  Please access the complete Weekly Update either as a series of Posts for Week 2 OR a downloadable PDF .

Stay Safe!

Questions or problems accessing the contents of this Weekly Update?  Please e-mail Dr. Meghan Vankosky or Jennifer Otani.  Past “Weekly Updates” can be accessed on our Weekly Update page.

Canola and Mustard Pests / Feature Entomologist: Owen Olfert

This year, we’re doing things a bit differently for our Insect of the Week. Instead of focussing on a single insect (pest or natural enemy), we’re looking at it from a crop perspective. Each week, we’ll pick a crop and list the insects that attack it along with additional helpful information. The insect list is based on the information found in the Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Management field guide. The field guide offers information describing lifecycle, damage description, monitoring/scouting strategies, economic thresholds (where available) and control options) for each economic pest.

In addition to an Insect of the Week, we’ll also feature one of the entomologists that help support the PPMN, either directly or indirectly.

This week’s feature crops are the Brassica oilseeds (mustard and canola) and Dr. Owen Olfert is our starring entomologist.

Canola Field
cc by 2.0 George Hodan

Canola has been gaining ground over wheat in terms of production area, yield and value since it was first introduced on the Prairies. In 2019, 20.4 million tons (18.5 million tonnes) were harvested from 20.4 million acres (8.3 million hectares). Mustard, typically grown in warmer and drier regions than canola, was grown on 398,000 acres (161,000 hectares) across the Prairies to produce 148,000 US tons (134,000 tonnes) across the prairies.

There are several pests that attack these crops, many are common to both crops. Monitoring and scouting protocols are found in the Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Management and the Cutworm Pests of Crops on the Canadian Prairies: Identification and Management Field Guide. More detailed protocols exist for some of the pests. In addition, you find a Seasonal Canola Insect Scouting Chart showing when specific pests are active on our Pest Insects page. Each pest listed is hyperlinked to additional information.

Canola Pests
  • Alfalfa looper
  • Army cutworm
  • Aster leafhopper
  • Beet webworm
  • Bertha armyworm
  • Blister beetles
  • Bronzed blossom beetle
  • Brown marmorated beetle
  • Cabbage maggot
  • Cabbage seedpod weevil
  • Clover cutworm
  • Darksided cutworm
  • Diamondback cutworm
  • Dingy cutworm
  • Flea beetles
  • Grasshoppers
  • Green peach aphid
  • Imported cabbageworm
  • Lygus bug
  • Painted lady butterfly
  • Rape pollen beetle
  • Red turnip beetle
  • Redbacked cutworm
  • Saltmarsh caterpillar
  • Seedcorn maggot
  • Swede midge
  • Turnip aphid
  • Turnip maggot
Mustard Pests
  • Army cutworm
  • Beet webworm
  • Bertha armyworm
  • Bronzed blossom beetle
  • Cabbage maggot
  • Clover cutworm
  • Diamondback moth
  • Flea beetles
  • Grasshoppers
  • Imported cabbageworm
  • Pale western cutworm
  • Rape pollen beetle
  • Red turnip beetle
  • Redbacked cutworm
  • Swede midge
  • Turnip aphid
  • Turnip maggot

ENTOMOLOGIST OF THE WEEK: Owen Olfert

Name: Owen Olfert
Affiliation: Saskatoon Research and Development Centre, Emeritus
Contact Information: owen.olfert@canada.ca

How do you contribute to insect monitoring or surveillance on the Prairies?

Before I retired, I was the Chair of the PPMN. In collaboration with provincial, federal and industry colleagues, the PPMN makes decisions on insect priorities, develops standardized monitoring protocols, determines timing of surveillance activities, provides appropriate survey tools to collaborators, conducts field surveys, assembles and analyzes data, drafts and presents visual survey results to the agriculture industry. As an Insect Ecologist, I was involved in all of the field and laboratory activities mentioned above.  Over the many years, the crop growing season activities have provided amazing professional opportunities in insect ecology, which overlapped strongly with my farming background.  I have been fortunate to explore all of the agro-ecosystems of the Prairies in search of insect populations that threaten field crops.

In your opinion, what is the most interesting field crop pest on the Prairies?

Not to offend other insect groups, but I think grasshoppers (Acrididae) are most interesting!  My interest in our prairie grasshopper complex began as a summer student with Dr. Roy Pickford (AAFC-Saskatoon) in the early 1970s.  Coincidentally, my first assignment as a research scientist with AAFC involved developing surveillance and management strategies for grasshopper pest species in field crops.  Over the years, my colleagues and I have published about 30 scientific papers related to grasshoppers.

What is your favourite beneficial insect?

My favourite is Macroglenes penetrans (Pteromalidae), a parasitoid of wheat midge (Sitodiplosis mosellana). It is the dominant parasitoid of wheat midge in western Canada. It is an egg-larval parasitoid; the female wasp oviposits into the egg of its host. It was discovered very early during the first major outbreak of wheat midge in the early 1980s.  All of the pest management tools developed for wheat midge have taken this parasitoid into account.  As a result, our estimated total saving in pesticide costs alone due to this parasitoid in the 1990’s was $248.3 million.

Tell us about an important project you are working on right now.

Our most recent project is related to an important agricultural pest – parasitoid – host plant complex, involving wheat midge and its parasitoid mentioned above. The project assesses the interactive population dynamics of the host plant (wheat), wheat midge, and M. penetrans, based on their respective life cycles and weather.  These simulation models helped to detail our understanding of the tri-trophic population dynamics.  The models will help guide pest management decisions prior to and during the growing season.

What tools, platforms, etc. do you use to communicate with your stakeholders?

In addition to the suite of communication tools used by the PPMN, I still attend conferences and get contacted to conduct interviews by the agricultural news media.

Weekly Update

Greetings!

Access the complete Weekly Update either as a series of Posts for Week 2 (April 15, 2019) OR a downloadable PDF version.

This week we share the prairie-wide risk maps to prepare for the 2019 growing season and we continue to evolve how the wind trajectory data is available.  

Happy Easter!

Questions or problems accessing the contents of this Weekly Update?  Please e-mail either Dr. Meghan Vankosky or Jennifer Otani.  Past “Weekly Updates” can be accessed on our Weekly Update page.

Subscribe to the Blog by following these easy steps!!

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

In a continuing effort to produce timely information, the wind trajectory reports will be available both DAILY and WEEKLY:

2019 Risk and Forecast Maps for the Prairies

The 2019 Prairie-Wide Risk and Forecast Maps can be viewed and downloaded here.

Economically significant insect pests are monitored across the Canadian prairies each year, thanks to extensive networks of collaborators and cooperators.  In 2018, that effort culminated in 5764 survey stops across Manitoba, Saskatchewan, Alberta and the BC Peace!  

Here’s what’s included in the PDF file:

  • Average tempature, average precipitation, and modeled soil moisture for 2018.
  • A series of geospatial maps are included for each of the target species; the current map is followed by the previous 4 years.  
  • For some species, the geospatial maps represent 2018 distributions used to infer risk in the coming 2019 growing season.  Data is included for bertha armyworm, cabbage seedpod weevil, pea leaf weevil, wheat stem sawfly and diamondback moth.
  • For wheat midge and grasshoppers, the geospatial maps forecast or predict expected populations or risk for the 2019 growing season.  

The historical Risk and Forecast Maps (2015-2019) are available for review.  

These maps help the agricultural industry prepare to manage insect pests across the prairies and helps growers make crop choices and anticipate scouting priorities within their growing region. From May to July, the Weekly Updates will provide in-season updates, predictive model outputs plus scouting tips and links to relevant information.  

Thank you to the many people who monitor each growing season!

2018 Swede Midge Pheromone Monitoring Results

In 2018, swede midge pheromone traps were deployed at 41 sites across the Prairie region of Canada to monitor adult populations of this brassica pest. Of the 41 trap sites, 16 were located in Alberta, 19 in Saskatchewan (where positive swede midge identifications were made in 2007 and 2009), and 6 in Manitoba.

None of the traps were positive for swede midge in 2018. 

We are grateful to all of the producers, agronomists, and cooperators who participated in the 2018 swede midge monitoring project. Without your assistance, we could not have supported such a thorough and widespread pheromone monitoring program.

We also extend our thanks to Jonathon Williams for organizing the program, distributing trapping materials, and processing returned sticky cards for adult swede midge.

Because of the serious threat that swede midge poses to canola production, it is vital that monitoring for swede midge continues across the Prairies. At this time, plans are being made for the 2019 swede midge monitoring program. We hope that we can count on your support and cooperation in 2019.

At this time, plans are being made for the 2019 swede midge monitoring program. Agrologists or growers interested in performing weekly monitoring in 2019 are encouraged to contact Jonathon Williams, Boyd Mori, or Meghan Vankosky for more information.

Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre

More information about swede midge can be found by:

Weekly Update

Greetings!

Access the complete Weekly Update either as a series of Posts for Week 02 (May 17, 2018) OR downloadable PDF version.  Also review the “Insect of the Week” for Week 2!




Questions or problems accessing the contents of this Weekly Update?  Please e-mail either Dr. Meghan Vankosky or Jennifer Otani.  Past “Weekly Updates” can be accessed on our Weekly Update page.

Subscribe to the Blog by following these three steps!

Weather synopsis

Weather synopsis – This past week (May 6-13), the average temperature was approximately 2 °C cooler than long term average (Fig. 1).  The warmest weekly temperatures occurred across Alberta. The 30-day average temperature (April 13-May 13) was very similar to long term average temperatures with the warmest conditions occurring across Alberta (Fig. 2).  

Figure 1. Average temperatures across the Canadian prairies these past seven days (May 6-13, 2018).
Figure 2. Average temperatures across the Canadian prairies this past month (April 13-May 13, 2018).

Weekly precipitation was well below average and 30-day total rainfall is approximately 50% less than average (Figs. 3 and 4). The lowest precipitation amounts have occurred across eastern Saskatchewan and most of Manitoba.

Figure 3. Cumulative precipitation (mm) these past seven days (May 6-13, 2018).


Figure 4. Cumulative precipitation (mm) this past month (April 13-May 13, 2018).
The map below reflects the Highest Temperatures occurring over the past 7 days across the prairies. 



The map below reflects the Lowest Temperatures occurring over the past 7 days across the prairies.



The growing degree day map (GDD) (Base 10ºC, March 1 – May 13, 2018) is below:


The growing degree day map (GDD) (Base 5ºC, March 1 – May 13, 2018) is below:



The maps above are all produced by Agriculture and Agri-Food Canada.  Growers may wish to bookmark the AAFC Drought Watch Maps for the growing season.

Scouting Charts – Canola and Flax

Field scouting is critical – it enables the identification of potential risks to crops. Accurate identification of insect pests PLUS the application of established monitoring methods will enable growers to make informed pest management decisions.

We offer TWO generalized insect pest scouting charts to aid in-field scouting on the Canadian prairies:

1. CANOLA INSECT SCOUTING CHART

    

2. A NEW FLAX INSECT SCOUTING CHART

    
These charts feature hyperlinks directing growers to downloadable PDF pages within the “Field crop and forage pests and their natural enemies in western Canada: Identification and management field guide“.

Whenever possible, monitor and compare pest densities to established economic or action thresholds to protect and preserve pollinators and beneficial arthropods. Economic thresholds, by definition, help growers avoid crop losses related to outbreaking insect pest species.

Good luck with your scouting!

Cutworms

Cutworms (Noctuidae) – A field guide is now available to help growers scout and manage Cutworms!  Cutworm Pest of Crops is available for free in either English or French and is posted on the Cutworm Field Guide page!  Also be sure to check the Insect of the Week through May – it highlights cutworms.  

Several species of cutworms  can be present in fields.  They range in colour from shiny opaque, to tan, to brownish-red with chevron patterning.  Cutworm biology, species information, plus monitoring recommendations are available in the Prairie Pest Monitoring Network’s Cutworm Monitoring Protocol.  Also refer to Manitoba Agriculture cutworm fact sheet which includes action and economic thresholds for cutworms in several crops. 

Scout fields that are “slow” to emerge, are missing rows, include wilting or yellowing plants, have bare patches, or appear highly attractive to birds – these are areas warranting a closer look.  Plan to follow-up by walking these areas later in the day when some cutworm species move above-ground to feed.  Start to dig below the soil surface (1-5 cm deep) near the base of a symptomatic plant or the adjacent healthy plant.  If the plant is well-established, check within the crown in addition to the adjacent soil.  The culprits could be wireworms or cutworms.  

For Albertans….. If you find cutworms, please consider using the Alberta Pest Surveillance Network’s “2018 Cutworm Reporting Tool”.  Once data entry occurs, growers can view the live 2018 cutworm map which is updated daily (see below for the map retrieved May 15, 2018).



Flea beetles

Flea Beetles (Chrysomelidae: Phyllotreta species) – Be on the lookout for flea beetle damage resulting from feeding on canola cotyledons but also on the stem.  Two species, Phyllotreta striolata and P. cruciferae, will feed on all cruciferous plants but they can cause economic levels of damage in canola during the seedling stages.


Remember, the Action Threshold for flea beetles on canola is 25% of cotyledon leaf area consumed.  Watch for shot-hole feeding in seedling canola but also watch the growing point and stems of seedlings which are particularly vulnerable to flea beetle feeding.


Estimating flea beetle feeding damage can be challenging.  Using a visual guide to estimate damage can be helpful.  Canola Watch circulated this article but also use the two images (copied below for reference) produced by Dr. J. Soroka (AAFC-Saskatoon)  – take it scouting!

Figure 1. Canola cotyledons with various percentages of leaf area consume owing to 
flea beetle feeding damage (Photo: Soroka & Underwood, AAFC-Saskatoon).

Figure 2.  Percent leaf area consumed by flea beetles feeding on canola seedlings 
(Photo: Soroka & Underwood, AAFC-Saskatoon).


Refer to the flea beetle page from the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” as an English-enhanced or French-enhanced version.

Cereal leaf beetle

Cereal leaf beetle (Oulema melanopus) – Model output indicates that CLB oviposition has begun in many locations, and that larvae may begin to appear in the next 7-10 days.  As of May 13th, CLB model runs indicated that oviposition was similar Lethbridge, Swift Current, Saskatoon and Brandon (Fig. 1). 

Figure 1.  Predicted cereal leaf beetle (O. melanupus) oviposition at four prairie locations. Values represent
predicted values based on 2018 weather and for model predictions based on long term average
weather (model simulations for April 1-May 13, 2018).

Lifecycle and Damage:

Adult: Adult cereal leaf beetles (CLB) have shiny bluish-black wing-covers (Fig. 2). The thorax and legs are light orange-brown. Females (4.9 to 5.5 mm) are slightly larger than the males (4.4 to 5 mm). Adult beetles overwinter in and along the margins of grain fields in protected places such as in straw stubble, under crop and leaf litter, and in the crevices of tree bark. They favour sites adjacent to shelter belts, deciduous and conifer forests. They emerge in the spring once temperature reaches 10-15 ºC and are active for about 6 weeks. They usually begin feeding on grasses, then move into winter cereals and later into spring cereals.  

Figure 2. Adult Oulema melanopus measure 4.4-5.5 mm long (Photo: M. Dolinski).


Egg: Eggs are laid approximately 14 days following the emergence of the adults. Eggs are laid singly or in pairs along the mid vein on the upper side of the leaf and are cylindrical, measuring 0.9 mm by 0.4 mm, and yellowish in colour. Eggs darken to black just before hatching.  


Larva: The larvae hatch in about 5 days and feed for about 3 weeks, passing through 4 growth stages (instars). The head and legs are brownish-black; the body is yellowish. Larvae are usually covered with a secretion of mucus and fecal material, giving them a shiny black, wet appearance (Fig. 3).  When the larva completes its growth, it drops to the ground and pupates in the soil. 


Figure 3.  Larval stage of Oulema melanopus with characteristic feeding 
damage visible on leaf (Photo: M. Dolinski).

Pupa: Pupal colour varies from a bright yellow when it is first formed, to the colour of the adult just before emergence. The pupal stage lasts 2 – 3 weeks. Adult beetles emerge and feed for a couple of weeks before seeking overwintering sites. There is one generation per year.


Fact sheets for CLB are published by the province of Alberta and available from the Prairie Pest Monitoring Network. Also access the Oulema melanopus page from the new “Field crop and forage pests and their natural enemies in western Canada – Identification and management field guide”.

Alfalfa weevil

Alfalfa Weevil (Hypera postica) – Degree-day maps of base 9°C are produced using the Harcourt/North Dakota models (Soroka et al. 2015).  Models predicting the development of Alfalfa weevil (Hypera postica) across the prairies are updated weekly to help growers time their in-field scouting for second-instar larvae. Compare the following predicted development stages and degree-day values from Soroka (2015) to the map below.




The alfalfa weevil model predicts that oviposition is well underway in southern Saskatchewan.  Figure 1 shows model output for Swift Current where first instar larvae should appear early next week.

Figure 1.  Predicted alfalfa weevil (Hypera postica) phenology at Swift Current SK. 
Values are based on model simulations for April 1-May 6, 2018.

The larval stage of this weevil feeds on alfalfa leaves in a manner that characterizes the pest as a “skeletonizer”.  The green larva featuring a dorsal, white line down the length of its body has a dark brown head capsule and will grow to 9mm long.  



Use the photo below as a visual reference to identify alfalfa weevil larvae.  Note the white dorsal line, the tapered shape of the abdomen and the dark head capsule.



Alfalfa growers are encouraged to check the Alfalfa Weevil Fact Sheet prepared by Dr. Julie Soroka (AAFC-Saskatoon).  Additional information can be accessed by reviewing the Alfalfa Weevil Page extracted from the “Field crop and forage pests and their natural enemies in western Canada – Identification and management field guide” (Philip et al. 2015).  The guide is available in both a free English-enhanced or French-enhanced version.


Pea leaf weevil

Pea Leaf Weevil (Sitona lineatus– The PLW model predicts that adults are beginning to fly. This is similar to model output based on long term (climate) data.  Model output estimates that oviposition should begin in late May or early June (Fig. 1).

Figure 1. Predicted PLW phenology at Swift Current based on long term climate data.
Values are based on model simulations (April 1 – May 6).

Pea leaf weevils emerge in the spring primarily by flying (at temperatures above 17ºC) or they may walk short distances. Pea leaf weevil movement into peas and faba beans is achieved primarily through flight.  Adults are slender, greyish-brown measuring approximately 5 mm in length (Fig. 2, Left).  

The pea leaf weevil resembles the sweet clover weevil (Sitona cylindricollis) but the former is distinguished by three light-coloured stripes extending length-wise down thorax and sometimes the abdomen.  All species of Sitona, including the pea leaf weevil, have a short snout.  


Figure 2.  Comparison images and descriptions of four Sitona species adults including pea leaf weevil (Left).


Adults will feed upon the leaf margins and growing points of legume seedlings (alfalfa, clover, dry beans, faba beans, peas) and produce a characteristic, scalloped (notched) edge.  Females lay 1000 to 1500 eggs in the soil either near or on developing pea or faba bean plants from May to June.



Reminder – The 2017 risk map for pea leaf weevils was released in March 2018.  The map is based on the number of feeding notches observed in peas (Fig. 3).  

Figure 3. Estimates of pea leaf weevil (S. lineatus) densities based on feeding notches observed in
peas grown in Alberta and Saskatchewan in 2017.

Biological and monitoring information related to pea leaf weevil in field crops is posted by the province of Alberta and in the PPMN monitoring protocol.

Also refer to the pea leaf weevil page within the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” – both English-enhanced or French-enhanced versions are available.  A review of this insect was published in 2011 in Prairie Soils and Crops by Carcamo and Vankosky.

Predicted grasshopper development

Grasshopper Simulation Model Output – The grasshopper simulation model will be used to monitor grasshopper development across the prairies. Weekly temperature data collected across the prairies is incorporated into the simulation model which calculates estimates of grasshopper development stages based on biological parameters for Melanoplus sanguinipes (Migratory grasshopper).  


As of May 13, 2018, predicted mean egg development was 68% (62% last week) and model output indicates that embryological development was 5% greater than long term average. Greatest development was predicted to be across southern Alberta with potential for hatch occurring near Medicine Hat and Bow Island (Fig. 6).

Figure 1. Grasshopper (M. sanguinipes) embryological development (%) based on
model simulations for April 1-May 13, 2018.

Reminder – The Prairie Pest Monitoring Network’s 2018 Grasshopper Forecast Map was released in March (Fig. 2).  Spring temperatures, soil moisture conditions, and precipitation all have an impact on survival of overwintered grasshopper eggs. Growers in areas highlighted orange or red in the map below should be vigilant this spring.

Figure 2.  Grasshopper forecast map (M. sanguinipes) for 2018 growing season.



Biological and monitoring information related to grasshoppers in field crops is posted by Manitoba AgricultureSaskatchewan AgricultureAlberta Agriculture and Forestry, the BC Ministry of Agriculture and the Prairie Pest Monitoring Network.  Also refer to the grasshopper pages within the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” as an English-enhanced or French-enhanced version.


Predicted bertha armyworm development

Bertha armyworm (Lepidoptera: Mamestra configurata– Bertha armyworm pupal development is predicted below.   The map illustrates that overwintered BAW are beginning to develop within their pupa located in the soil but are still several weeks away from emerging as moths.  

Biological and monitoring information related to bertha armyworm in field crops is posted by the provinces of ManitobaSaskatchewanAlberta and the Prairie Pest Monitoring Network.  Also refer to the bertha armyworm pages within the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” – both English-enhanced or French-enhanced versions are available.

Crop protection guides

Crop Protection Guides – If you don’t have a copy of your province’s Crop Protection Guide, please make use of these links to access:
• Saskatchewan’s Crop Protection Guide
• Manitoba’s Guide to Crop Protection Guide 
• Alberta’s Crop Protection or Blue Book 
• Western Committee on Crop Pests Guidelines for the Control of Crop Pests

Provincial Insect Pest Reports

Provincial entomologists provide insect pest updates throughout the growing season so we have attempted to link to their most recent information: 


Manitoba’s Insect and Disease Update for 2018 will be posted soon. Watch for updates prepared by John Gavloski.

Saskatchewan’s Crop Production News for 2018 will be posted soon. Watch for updates prepared by James Tansey and Carter Peru.  

Watch for Alberta Agriculture and Forestry’s Call of the Land for insect pest updates from Scott Meers. The most recent Call of the Land (posted on May 15, 2018) highlights the importance of wireworms in field crops and describes how growers can collaborate with AAFC entomologists (Dr. Haley Catton) by baiting grain fields in an effort to obtain wireworm specimens to further their research efforts.

Crop reports

Crop reports are produced by:
• Manitoba Agriculture, Rural Development (May 14, 2018)
• Saskatchewan Agriculture Crop Report (May 1-7, 2018)
• Alberta Agriculture and Forestry Crop Report (May 8, 2018)


The following crop reports are also available:
• The United States Department of Agriculture (USDA) produces a Crop Progress Report (view the May 14, 2018 edition).
• The USDA’s Weekly Weather and Crop Bulletin (view the May 15, 2018 edition).

Insect of the Week – Darksided cutworm

It’s spring, so it’s cutworm season. This week’s insect is the darksided cutworm. Mature larvae are hairless, greyish with a prominent white stripe on either side just above their legs. It is a climbing cutworm with feeding occurring at night. They have a broad host range including cereals, canola, corn, flax, sunflower, vegetables berry and tree fruits.

Find out more about the darksided cutworm at the Insect of the Week page.  Other important species include dingy, army, redbacked and pale western cutworms (See Insect of the Week: 2017 – May 1, 8, 15 and 29).

Darksided cutworm
Photocredit John Gavloski, Manitoba Ministry of Agriculture

In addition, Cutworm Pests of Crops on the Canadian Prairies – Identification and Management Field Guide was recently published (2017). This new handy manual has chapters on general biology, history of outbreaks, scouting techniques, natural enemies and general control options. The meat of the manual is descriptions of 24 cutworm species, their lifecycle, hosts, damage, monitoring and economic thresholds. To download a copy, go to the Cutworm Field Guide page.

Wind trajectories

Background.  Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990’s. Trajectory models are used to deliver an early-warning system for the origin and destination of migratory invasive species, such as diamondback moth.  In addition, plant pathologists have shown that trajectories can assist with the prediction of plant disease infestations and are also beginning to utilize these same data. 


We receive two types of model output from ECCC: reverse trajectories (RT) and forward trajectories (FT): 
(i) Reverse trajectories refer to air currents that are tracked back in time from specified Canadian locations over a five-day period prior to their arrival date.  Of particular interest are those trajectories that, prior to their arrival in Canada, originated over northwestern and southern USA and Mexico, anywhere diamondback moth populations overwinter and adults are actively migrating.  If diamondback adults are present in the air currents that originate from these southern locations, the moths may be deposited on the Prairies at sites along the trajectory, depending on the local weather conditions at the time that the trajectories pass over our area (e.g. rain showers, etc.). RTs are the best available estimate of 3D wind fields at a specific point. They are based on observations, satellite and radiosonde data. 

(ii) Forward trajectories have a similar purpose; however, the modelling process begins at sites in USA and Mexico. The model output predicts the pathway of a trajectory. Again, of interest to us are the winds that eventually end up passing over the Prairies. 

Current Data

Pacific Northwest (PNW) – The number of RTs, predicted to cross the prairies, has increased over the past week (Fig. 1). Though there has been an increase, results for May 1-14 predicted that 38 PNW reverse trajectories (RT) have crossed the prairies. This total is less than the average number 107 (based on 2007-2017) and well below last year’s results (155). 

Figure 1. Daily total of reverse trajectories (RT) originating over the Pacific Northwest that
have entered the prairies during April 2018.

Weather forecasts (7 day):

Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html 

Insect of the Week – Redbacked cutworm

For many, seed isn’t even in the ground yet, but the cutworms are ready for it when it is. So the time to start scouting for cutworms is now! Even if it is too wet to seed, consider checking volunteer plants for cutworms or feeding damage. General cutworm monitoring protocols can be found on the Monitoring Protocols page. Species-specific protocols can be found in the new Cutworm Pests of Crops on the Canadian Prairies (see below for download details).

There are over 20 cutworm species that may cause economic damage to your crop, each with different feeding behaviour, preferred hosts and lifecycle. This is why species identification is so important: it helps growers understand what they are up against: determining how and when to scout, knowing whether the cutworm species is found above-ground (climbing) or below-ground, recognizing damage, choosing control options. Species also impacts the most appropriate time of day for monitoring and applying controls.

Action and economic thresholds do exist for many of the cutworm species – please use them. This will help control costs by eliminating unnecessary/un-economic sprays and reduce your impact on non-target insects – insects that include cutworm natural enemies that work in the background to control cutworm populations.

This week’s Insect of the Week is the redbacked cutworm. This is an above ground species. Young larvae feed on newly-emerging shoots and furled leaves, creating small holes. Older larvae cut off leaves and sever plants just below the soil surface. Occasionally, the larvae pull the plants underground to feed on them.

For more information about Redbacked Cutworms, go to the Insect of Week page.

Redbacked cutworms – John Gavloski, Manitoba Agriculture

Remember the NEW Cutworm Field Guide is free and downloadable in 2017!

Weekly Update – Greetings!

Greetings!

A downloadable PDF version of the complete Weekly Update for Week 2 (May 11, 2017) can be accessed here.



Questions or problems accessing the contents of this Weekly Update?  Please e-mail either Dr. Owen Olfert or Jennifer Otani.  Past “Weekly Updates” can be accessed on our Weekly Update page.

Subscribe to the Blog by following these easy steps!

Weekly Update – Weather Synopsis

Weather synopsis – Many locations across southern Saskatchewan and Alberta experienced temperatures above 25°C this week. Average temperatures were warmest across southeastern Saskatchewan from May 1-8, 2017. 

The map below reflects the Accumulated Precipitation for the Growing Season so far for the prairie provinces (i.e., April 1-May 10, 2017):




Whereas the seven-day precipitation accumulations were greatest across Saskatchewan:



The map below shows the Lowest Temperatures the Past 7 Days (May 4-10, 2017) across the prairies:





Whereas the map below shows the Highest Temperatures the Past 7 Days (May 4-10, 2017):




The updated growing degree day map (GDD) (Base 5ºC, March 1 – May 7, 2017) is below:





While the growing degree day map (GDD) (Base 10ºC, March 1 – May 7, 2017) is below:


The maps above are all produced by Agriculture and Agri-Food Canada.  Growers may wish to bookmark the AAFC Drought Watch Maps for the growing season.


2017 Wind Trajectories

THE WEEK OF MAY 1, 2017:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of May 9, 2017:

Reverse trajectories (RT)

Wind trajectories have been monitored since April 1 this year.  This week there was an increase in the number of RT winds that crossed the prairies from the Pacific Northwest (PNW) of USA.  In Alberta, Grande Prairie and Beiseker had a significant increase in the number of RT winds over this past week (Fig. 1 and 2). In addition to the PNW, there were three prairie locations (Selkirk MB, Unity SK and Olds AB) that had winds originating from California and Texas. 

Figure 1. Weekly cumulative counts of Reverse Trajectories (RT) from the Pacific Northwest (PNW) from May 3-9, 2017 (2017 Olfert et al.).


Figure 2. Total number of RT winds from the Pacific Northwest from April 1-May 9, 2017.

Forward trajectories (FT)
Similar to Reverse Trajectories, most of the model output of Forward Trajectories (FT) have originated from the Pacific Northwest (PNW).  However, a few winds have been forecasted to cross the prairies from the southern USA since April 1, 2017 (Fig. 3).

Figure 3. Source destinations and number of FT winds originating from the USA between April 1-May 9, 2017.

Weather forecasts (7 day):
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html

Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Pheromone traps attracting male Diamondback moths are being deployed across the prairies.  High altitude air masses are tracked by AAFC-Saskatoon Staff (forward and backward trajectories).  These wind events have the potential to aid the movement of diamondback moth and aster leafhoppers northward on to the Canadian prairies from Mexico, southern and central USA as well as the Pacific Northwest.  Diamondback moth pheromone traps deployed across the prairies confirm their arrival – many thanks to the people who deploy and do the weekly monitoring!




Alberta Agriculture and Forestry has a live 2017 map reporting Diamondback moth pheromone trap interceptions.  Watch for updates from Manitoba and Saskatchewan as growing season progresses.


Biological and monitoring information for DBM is posted by Manitoba Agriculture, Food and Rural DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

Weekly Update – Flea beetles

Flea Beetles (Chrysomelidae: Phyllotreta species) – Be on the lookout for flea beetle damage resulting from feeding on canola cotyledons but also on the stem.



Remember, the Action Threshold for flea beetles on canola is 25% of cotyledon leaf area consumed.  Shot-hole feeding is the traditional damage in seedling canola but watch the growing point and stems of seedlings.

Refer to the flea beetle page from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” as an English-enhanced or French-enhanced version.

Weekly Update – Cutworms

Cutworms (Noctuidae) – NEW – Just in time for spring scouting!  A new field guide is now available to help growers scout and manage Cutworms!  Cutworm Pest of Crops is now available for free in either English or French and is featured at our new Cutworm Field Guide!  Also be sure to check the Insect of the Week throughout May – it highlights cutworms!  Be sure to read more about Redbacked cutworms.

Figure 1. Redbacked cutworms retrieved from a Manitoban field (Photo: J. Gavloski)

Several species of cutworms  can be present in fields.  They range in colour from shiny opaque, to tan, to brownish-red with chevron patterning.  Cutworm biology, species information, plus monitoring recommendations are available in the Prairie Pest Monitoring Network’s Cutworm Monitoring Protocol.  Also refer to the Manitoba Agriculture cutworm fact sheet which includes action and economic thresholds for cutworms in several crops. 

Keep an eye on fields that are “slow” to emerge, are missing rows, include wilting or yellowing plants, have bare patches, or appear highly attractive to birds – these are areas warranting a closer look.  Plan to follow-up by walking these areas later in the day when some cutworm species move above-ground to feed.  Start to dig below the soil surface (1-5 cm deep) near the base of a symptomatic plant or the adjacent healthy plant.  If the plant is well-established, check within the crown in addition to the adjacent soil.  The culprits could be wireworms or cutworms.  

For Albertans….. If you find cutworms, please consider using the Alberta Pest Surveillance Network’s “2017 Cutworm Reporting Tool”.  Once data entry occurs, growers can view the live 2017 cutworm map which is updated daily.


Remember the NEW Cutworm Field Guide is free and downloadable in 2017!

Weekly Update – Cereal leaf beetle

Cereal leaf beetle (Oulema melanopus) – As
of May 8, 2017, CLB model output predicted that oviposition is underway in populations
that may be present in the Lethbridge, Swift Current and Brandon areas. Compared
to 2016, phenological development in 2017 is approximately 1 week later.

Lifecycle and Damage:
Adult: Adult cereal leaf beetles (CLB) have shiny bluish-black wing-covers (Fig. 1). The thorax and legs are light orange-brown. Females (4.9 to 5.5 mm) are slightly larger than the males (4.4 to 5 mm). Adult beetles overwinter in and along the margins of grain fields in protected places such as in straw stubble, under crop and leaf litter, and in the crevices of tree bark. They favour sites adjacent to shelter belts, deciduous and conifer forests. They emerge in the spring once temperature reaches 10-15 ºC and are active for about 6 weeks. They usually begin feeding on grasses, then move into winter cereals and later into spring cereals.  

Figure 1. Adult Oulema melanopus (~4.4-5.5 mm long).


Egg: Eggs are laid approximately 14 days following the emergence of the adults. Eggs are laid singly or in pairs along the mid vein on the upper side of the leaf and are cylindrical, measuring 0.9 mm by 0.4 mm, and yellowish in colour. Eggs darken to black just before hatching.  

Larva: The larvae hatch in about 5 days and feed for about 3 weeks, passing through 4 growth stages (instars). The head and legs are brownish-black; the body is yellowish. Larvae are usually covered with a secretion of mucus and fecal material, giving them a shiny black, wet appearance (Fig. 2).  When the larva completes its growth, it drops to the ground and pupates in the soil. 

Figure 2.  Larval stage of Oulema melanopus with characteristic feeding damage visible on leaf.



Pupa: Pupal colour varies from a bright yellow when it is first formed, to the colour of the adult just before emergence. The pupal stage lasts 2 – 3 weeks. Adult beetles emerge and feed for a couple of weeks before seeking overwintering sites. There is one generation per year.

Fact sheets for CLB are published by the province of Alberta and available from the Prairie Pest Monitoring Network. Also access the Oulema melanopus page from the new “Field crop and forage pests and their natural enemies in western Canada – Identification and management field guide”.

Weekly Update – Alfalfa weevil

Alfalfa Weevil (Hypera postica) – The larval stage of this weevil feeds on alfalfa leaves in a manner that characterizes the pest as a “skeletonizer”.  The green larva featuring a dorsal, white line down the length of its body has a dark brown head capsule and will grow to 9mm long.  Alfalfa growers are encouraged to check the Alfalfa Weevil Fact Sheet prepared by Dr. Julie Soroka (AAFC-Saskatoon).

Degree-day maps of base 9°C are now being produced by Soroka, Olfert, and Giffen (2016) using the Harcourt/North Dakota models.  The aim or the modelling is to predict the development of Alfalfa weevil (Hypera postica) across the prairies and to help growers time their in-field scouting as second-instar larvae are predicted to occur.  Compare the following predicted development stages and degree-day values copied below (Soroka 2015) to the map below.





This week, alfalfa growers in southern Alberta and southern Saskatchewan (areas of the map highlighted tan) are on the verge of predicted egg hatch of the alfalfa weevil.



Use the figure below as a visual reference to identify alfalfa weevil larvae.  Note the white dorsal line, the tapered shape and the dark head capsule.

Weekly Update – Pea leaf weevil

Pea Leaf Weevil (Sitona lineatus– This species was one of the “big” insects of 2016’s field crop growing season.  The distribution of pea leaf weevil increased dramatically based on both damage assessments AND collection of adults in 2016 (Fig. 1) compared to previous years (Fig. 2).

Figure 1. Distribution of pea leaf weevil (Sitona lineatus) based on surveying conducted in 2016 (Olfert et al. 2017).


Figure 2.  Distributions of pea leaf weevil based on surveying conducted between 2012-2015 (Olfert et al. 2017).



Pea leaf weevils emerge in the spring primarily by flying (at temperatures above 17ºC) or they may walk short distances. Pea leaf weevil movement into peas and faba beans is achieved primarily through flight.  Adults are slender, greyish-brown measuring approximately 5 mm in length (Fig. 3, Left).  

The pea leaf weevil resembles the sweet clover weevil (Sitona cylindricollis) but the former is distinguished by three light-coloured stripes extending length-wise down thorax and sometimes the abdomen.  All species of Sitona, including the pea leaf weevil, have a short snout.  

Figure 3.  Comparison images and descriptions of four Sitona species adults including pea leaf weevil (Left).


Adults will feed upon the leaf margins and growing points of legume seedlings (alfalfa, clover, dry beans, faba beans, peas) and produce a characteristic, scalloped (notched) edge.  Females lay 1000 to 1500 eggs in the soil either near or on developing pea or faba bean plants from May to June.


Biological and monitoring information related to pea leaf weevil in field crops is posted by the province of Alberta.  Also refer to the pea leaf weevil page within the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” – both English-enhanced or French-enhanced versions are available.  A review of this insect was published in 2011 in Prairie Soils and Crops by Carcamo and Vankosky.

Weekly Update – Crop protection guides

Crop Protection Guides – If you don’t have a copy of your province’s Crop Protection Guide, please make use of these links to access:
Saskatchewan’s Crop Protection Guide
Manitoba’s Guide to Crop Protection Guide 
Alberta’s Crop Protection or Blue Book 
Western Committee on Crop Pests Guidelines for the Control of Crop Pests

Provincial Insect Pest Reports

Provincial entomologists provide insect pest updates throughout the growing season so we have attempted to link to their most recent information: 


Manitoba’s Insect and Disease Update for 2017 will be posted soon. Watch for updates prepared by John Gavloski and Pratisara Bajracharya).

Saskatchewan’s Crop Production News for 2017 will be posted soon. Watch for updates prepared by Scott Hartley and Danielle Stephens.  

Watch for Alberta Agriculture and Forestry’s Call of the Land for updates from Scott Meers who recently provided an update (posted on May 11, 2017). Cutworms, flea beetles and alfalfa weevil were noted as being insects to watch at this point in Alberta.

Crop reports

Crop reports are produced by:
• Manitoba Agriculture, Rural Development (May 8, 2017)
• Saskatchewan Agriculture Crop Report (May 2-8, 2017)
• Alberta Agriculture and Forestry Crop Report (May 2, 2017)

International reports are produced by:
• The United States Department of Agriculture’s Crop Progress Report (May 8, 2017)
• The European Commission’s Agriculture Balance Sheets and Production Details by Member States (Excel file retrieved May 11, 2017).

Weekly Update – Predicted Grasshopper Development

Grasshopper Simulation Model Output – The grasshopper simulation model will be used to monitor grasshopper development across the prairies. Weekly temperature data collected across the prairies is incorporated into the simulation model which calculates estimates of grasshopper development stages based on biological parameters for Melanoplus sanguinipes (Migratory grasshopper).  


As of May 8, 2017, predicted mean embryological development was 62% (56% last week); the greatest development was predicted to be across southern Saskatchewan. Embryological development was very similar to long term averages (60%) though well behind 2016 (74%). Hatch was not predicted for any locations. 

Reminder – The Prairie Pest Monitoring Network’s 2017 Grasshopper Forecast Map (Figure 1) was released in January.  While spring temperatures, soil moisture conditions, and precipitation can all have an impact on overwintered grasshopper eggs, growers in areas highlighted orange or red in the map below should be vigilant as nymphs begin to hatch this season.

Figure 1. Prairie Pest Monitoring Network’s 2017 Grasshopper Forecast Map.


Biological and monitoring information related to grasshoppers in field crops is posted by Manitoba Agriculture, Food and Rural DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, the BC Ministry of Agriculture and the Prairie Pest Monitoring Network.  Also refer to the grasshopper pages within the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” as an English-enhanced or French-enhanced version.

Weekly Update – Scouting Charts (Canola and Flax)

Field scouting is critical – it enables the identification of potential risks to crops.  Field crop production systems across the Canadian prairies will suffer insect pest outbreaks.  However, the identification of these insect pests PLUS the application of established monitoring methods will enable growers to make informed pest management decisions.

For 2017, we offer TWO generalized insect pest scouting charts to aid in-field scouting on the Canadian prairies:


1. CANOLA INSECT SCOUTING CHART
   



2. A NEW FLAX INSECT SCOUTING CHART
    

These charts feature hyperlinks directing growers to downloadable PDF pages within the “Field crop and forage pests and their natural enemies in western Canada: Identification and management field guide“.

Growers can access biological information about the pest and its natural enemies, the type of damage it causes, how to monitor, and what pest management strategies might apply to help protect yield and quality (Fig. 1).

Whenever possible, monitor and compare pest densities to established economic or action thresholds to protect and preserve pollinators and beneficial arthropods. Economic thresholds, by definition, help growers avoid crop losses related to outbreaking insect pest species.

Good luck with your scouting!

Figure 1. Example of Bertha armyworm pages from the above field guide:

Weekly Update – Monarch migration

We again track the migration of the Monarch butterflies and they move north by checking the 2017 Monarch Migration Map!  A screen shot of the map has been placed below as an example (retrieved 11May2017) but follow the hyperlink to check the interactive map!  They’re getting closer to Canada! 


Weekly Update – Weather synopsis

Across the prairies, meteorological conditions for the period of May 1-8, 2016, continued to be warm and dry. 


The average temperature was 12.2 C and was 5 C warmer than the average temperature for May 1-8. 


This past week rainfall amounts were well below normal. Average rainfall (prairie wide) was less than 1 mm. 

Normal weekly rainfall is 8.7 mm. Rainfall amounts for the past 30 days (average =21 mm) were also below average (average= 28 mm). 

Compared to last week, soil moisture levels were predicted to be lower.



The map below reflects the Highest Temperatures occurring over the past 7 days across the prairies.


The map below reflects the Lowest Temperatures occurring over the past 7 days across the prairies.





The maps above are all produced by Agriculture and Agri-Food Canada.  Growers may wish to bookmark the AAFC Drought Watch Maps for the growing season.

Wind trajectories

2016 Wind Trajectories – High altitude air masses originate from southern locations and continuously move northerly to Canadian destinations. Insect pest species such as Diamondback moth and Aster leafhoppers, traditionally unable to overwinter above the 49th parallel, can utilize these air masses in the spring to move north from Mexico and the United States (southern or Pacific northwest). Data acquired from Environment Canada is compiled by Olfert et al. (AAFC-Saskatoon) to track and model spring high altitude air masses with respect to potential introductions of insect pests onto the Canadian prairies. 

Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies.


As of May 9, 2016, Reverse Trajectories (RTs) originating from Mexico and southwest USA have crossed most prairie locations:






Whereas Reverse Trajectories (RTs) originating from northwest USA have arrived over a greater area of the prairies with more RTs arriving in Alberta and the BC Peace:

Review the 2016 Wind Trajectory Updates in PDF format.


Weather forecasts (7 day):
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html

Weekly Update – Flea beetles

Flea Beetles (Chrysomelidae: Phyllotreta species) – Be on the lookout for flea beetle damage resulting from feeding on canola cotyledons but also on the stem.





Remember, the Action Threshold for flea beetles on canola is 25% of cotyledon leaf area consumed.  Shot-hole feeding is the traditional damage in seedling canola but watch the growing point and stems of seedlings.


Refer to the flea beetle page from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” as an English-enhanced or French-enhanced version.

Weekly Update – Cutworms

Cutworms (Noctuidae) – Keep an eye on fields that are “slow” to emerge, are missing rows, include wilting or yellowing plants, have bare patches, or appear highly attractive to birds – these are areas warranting a closer look.  Plan to follow-up by walking these areas later in the day when some cutworm species move above-ground to feed.  Start to dig below the soil surface (1-5 cm deep) near the base of a symptomatic plant or the adjacent healthy plant.  If the plant is well-established, check within the crown in addition to the adjacent soil.  The culprits could be wireworms or cutworms.  


Several species of cutworms  can be present in fields.  They range in colour from shiny opaque, to tan, to brownish-red with chevron patterning.  Cutworm biology, species information, plus monitoring recommendations are available in the Prairie Pest Monitoring Network’s Cutworm Monitoring Protocol.  Also refer to Manitoba Agriculture and Rural Initiatives cutworm fact sheet which includes action and economic thresholds for cutworms in several crops. 

More information about cutworms can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  An excerpt of ONLY Cutworm pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” as an English-enhanced or French-enhanced version.





For ALBERTANS….. If cutworms are spotted in Albertan fields, please consider using the Alberta Pest Surveillance Network’s “2016 Cutworm Reporting Tool”.  Once data entry occurs, your growers can view the live 2016 cutworm map.

A screen shot of the live map has been retrieved (10May2016) below for your reference.


Remember the NEW Cutworm Field Guide is free and downloadable in 2017!

Weekly Update – Cereal leaf beetle predictions

Cereal leaf beetle (Oulema melanopus) – Based on last week’s warm weather, our bioclimate model predicted rapid development of cereal leaf beetle (CLB) populations.


As of May 8, 2016, model indicated that oviposition is well underway and that larvae should be appearing across southern Alberta and a week later in southern Saskatchewan. Larval populations are predicted to peak in mid-June in southern Alberta and one to two weeks later at the Saskatchewan and Manitoba locations.




Predicted dates of peak emergence of CLB eggs and larvae:



Output suggests that it’s parasitoid, Tetrastichus julis, should be emerging during the period when CLB eggs are most abundant. The model run for Swan River MB showed potential symmetry for both species, though phenologies would be two weeks later than for southern Alberta.





 



Fact sheets for CLB are published by the province of Alberta and by the Prairie Pest Monitoring Network. Also access the Oulema melanopus page from the new “Field crop and forage pests and their natural enemies in western Canada – Identification and management field guide”.

Weekly Update – Predicted Grasshopper Development

Grasshoppers (Acrididae) – Warm conditions over the past seven days have resulted in rapid grasshopper development. Predicted mean embryological development was 74% (last week was 62%) with greatest development predicted to be in southern AB. Embryological development is predicted to be 16% ahead of long term average values (prairie wide). The model predicts that 4% of the hatch is complete (AB, SK and MB).



Recall that the 2016 Grasshopper Forecast Map circulated in January predicted the following risk areas.  







Biological and monitoring information related to grasshoppers in field crops is posted by the provinces of Manitoba, Saskatchewan, Alberta, British Columbia and the Prairie Pest Monitoring Network.  Also refer to the grasshopper pages within the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” – both English-enhanced or French-enhanced versions are available.


Weekly Update – Crop protection guide

Crop Protection Guides – If you don’t have a copy of your province’s Crop Protection Guide, please make use of these links to access:

Weekly Update – Crop reports

Crop reports are produced by:



International reports are produced by:

Weekly Update – Greetings!

A downloadable PDF version of the complete Weekly Update for Week 2 (May 11, 2016) can be accessed here.


Subscribe to the Blog by following the instructions posted here!  You can receive automatic updates in your inbox through the growing season.

Weekly Update – Pea leaf weevil

Pea Leaf Weevil (Sitona lineatus) – Pea leaf weevils emerge in the spring primarily by flying (at temperatures above 17ºC) or they may walk short distances. Pea leaf weevil movement into peas and faba beans is achieved primarily through flight.  Adults are slender, greyish-brown measuring approximately 5 mm in length.  


The pea leaf weevil resembles the sweet clover weevil (Sitona cylindricollis) yet the former is distinguished by three light-coloured stripes extending length-wise down thorax and sometimes the abdomen (Access the Pea leaf weevil monitoring protocol).  All species of Sitona, including the pea leaf weevil, have a short snout.  



Adults will feed upon the leaf margins and growing points of legume seedlings (alfalfa, clover, dry beans, faba beans, peas) and produce a characteristic, scalloped (notched) edge.  Females lay 1000 to 1500 eggs in the soil either near or on developing pea or faba bean plants from May to June.


Information related to Pea leaf weevil in Alberta and the forecast for 2016 is posted here.  

Predicted Alfalfa Weevil Development

Degree-day maps of base 9°C are now being produced by Soroka, Olfert, and Giffen (2015) using the Harcourt/North Dakota models predicting the development of Alfalfa weevil (Hypera postica) across the Canadian prairies.  The model output is mapped below to help alfalfa growers time their in-field monitoring.


Watch this map for the predicted occurrence of second-instar alfalfa weevil larvae.  The economic threshold for alfalfa weevil targets third- and fourth-instar larvae but, in the event that second-instar larval densities exceed either the forage or seed production thresholds, control is appropriate to prevent third-instar peaks.


The model predicted egg hatch began the week of May 14, 2015, in the Brooks AB area (note area below shaded brown corresponding to 165 DD base 9°C).  Growers in that area should be monitoring for alfalfa weevil this week.

Please contact julie.soroka@agr.gc.ca for information pertaining to this map.

Wind Trajectories

   Wind trajectories Related to Diamondback Moth (DBM) and Aster Leafhopper Introductions to the Canadian
Prairies in 2015

BACKGROUND:
  Potential wind events capable of carrying insect
pests from source areas in the USA can be identified by following trajectories
for air parcels through time. 
High altitude air masses,
originating from southern locations, frequently move northerly to Canadian
destinations. Insect pest species such as Diamondback moth and Aster
leafhoppers, traditionally unable to overwinter above the 49th parallel, can
utilize these air masses in the spring to move north from Mexico and the United
States (southern or Pacific northwest). 

Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse
Trajectories
 track air masses arriving across the prairies back to
their point of origin.  Forward Trajectories predict
favourable winds expected to arrive across the Canadian Prairies.  
    Updated: May 13, 2015
    1. Reverse trajectories (RT) – During April and early
May, reverse trajectories winds were originating over the Pacific Ocean and
tracking in a west to east direction across North America.  Since May 8th
most are now originating over the Arctic.
    a. Pacific Northwest (PNW) –
Nothing to report.
    b. Mexico and southwest USA (SW)
– Nothing to report.
    2. Forward trajectories (FT)
    There are
a number of forward trajectories from southern USA and Mexico predicted to
cross the prairies over the next five days. The Imperial Valley and Mexicali
FTs are predicted to cross southern Saskatchewan and Manitoba.  The Santa
Maria FT is predicted to cross into central Alberta. 

Seasonal canola scouting chart

Field scouting is critical because it
enables the identification of potential risks to crops.  Canola production
systems across the Canadian prairies will suffer insect pest outbreaks.
 However, the identification of these insect pests PLUS the application of
established monitoring methods will enable growers to make informed pest
management decisions.
This year we offer a generalized canola
scouting chart to aid in-field scouting on the Canadian prairies. Two versions
are offered below

the first
version
contains
hyperlinks to help growers learn more about some of our insect pests and how to
monitor while the second version may be easier to view or print.  

Whenever possible, monitor and compare to
established economic thresholds so pollinators and beneficial arthropods are
preserved.  Economic thresholds, by definition, can help growers avoid crop losses due to an insect pest
.
Good luck with the growing season!


Insect of the Week – Crucifer and Striped flea beetles

See this week’s Insect of the Week for descriptions and pictures of the crucifer and striped flea beetles (Phyllotreta cruciferae and P. striolata) from the new Field Crop and Forage Pests and their Natural Enemies in Western Canada – Identification and Management Field Guide