Predicted diamondback moth development

The Diamondback moth (DBM) model was run with a biofix of May 15, 2020. DBM densities generally increase with increasing numbers of generations. Figure 1 represents the model output for the 2020 growing season (as of August 17, 2020). The number of generations varies from two in western Alberta to four in southeastern Saskatchewan and most of Manitoba (Fig. 1). Next, the model was run with climate normal data to compare the 2020 growing season with an ‘average’ growing season (Fig. 2). The second map (climate normal) indicates that an average growing season results in two to three generations, with a fourth generation predicted to occur near Winnipeg (Fig. 2). These results indicate that there was an elevated DBM risk in 2020.

Figure 1. Using a biofix date of May 15, 2020, the projected number of diamondback moth (Plutella xylostella) generations across the Canadian prairies as of August 17, 2020.
Figure 2. Using a biofix date of May 15, 2020, the projected number of diamondback moth (Plutella xylostella) generations across the Canadian prairies as of August 17, 2020, using climate normal data.

The economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m² (approximately 1-2 larvae per plant).

Monitoring to apply the economic threshold: Remove the plants in an area measuring 0.1 m² (about 12″ square). Beat them on to a clean surface and count the number of larvae (Fig. 3) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

This image has an empty alt attribute; its file name is DBM_Larva_AAFC.jpg
Figure 3. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.
This image has an empty alt attribute; its file name is DBM_Pupa_AAFC-1.jpg
Figure 4. Diamondback moth pupa within silken cocoon.
This image has an empty alt attribute; its file name is DBM_adult_AAFC-1.png
Figure 5. Diamondback moth.

Biological and monitoring information for DBM is posted by Manitoba AgricultureSaskatchewan Agriculture, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the  “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide“.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

Predicted diamondback moth development

This week, the DBM model based on Harcourt (1954) was run with a biofix of May 15, 2020. Most of Alberta has had two generations. It is possible that three generations have been completed across Saskatchewan and southeastern Alberta where it has been warmer. Results indicate that a potential fourth generation may be occurring across southern Manitoba. DBM densities generally increase with increasing numbers of generations. Later maturing canola fields may be susceptible to damage resulting from larval feeding.

Figure 1. Using a biofix date of May 15, 2020, the projected number of diamondback moth (Plutella xylostella) generations across the Canadian prairies as of August 10, 2020.

Monitoring:

Remove the plants in an area measuring 0.1 m² (about 12″ square). Beat them on to a clean surface and count the number of larvae (Fig. 2) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

This image has an empty alt attribute; its file name is DBM_Larva_AAFC.jpg
Figure 2. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.
This image has an empty alt attribute; its file name is DBM_Pupa_AAFC-1.jpg
Figure 3. Diamondback moth pupa within silken cocoon.

Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m² (approximately 1-2 larvae per plant).

This image has an empty alt attribute; its file name is DBM_adult_AAFC-1.png
Figure 4. Diamondback moth.

Biological and monitoring information for DBM is posted by Manitoba AgricultureSaskatchewan Agriculture, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the  “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide“.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

Predicted diamondback moth development

Based on Harcourt (1954) the DBM model was run with a biofix of May 15, 2020. Model runs (as of August 3, 2020) were conducted with weather data for 2020 (Fig. 1) and climate normals (long term average temperatures). The first map illustrates that potentially three generations have been completed across Manitoba and southeastern Saskatchewan (Fig. 1). Most of the prairies have had two generations (Fig. 1). The second map, showing results for climate normal data, indicates that prairie populations should have completed two generations (Fig. 2).

Figure 1. Using a biofix date of May 15, 2020, the projected number of diamondback moth (Plutella xylostella) generations across the Canadian prairies as of August 3, 2020.
Figure 2. Using a biofix date of May 15, 2020, the projected number of diamondback moth (Plutella xylostella) generations across the Canadian prairies using Climate Normal data.

The charts provide location specific details regarding potential development at Winnipeg (Fig. 3) and Lacombe (Fig. 4). The first chart illustrates DBM development at Winnipeg. Results indicate that there is potential for a fourth generation of DBM to occur in southern Manitoba. Populations near Lacombe are predicted to be completing the second generation.

Figure 3. Predicted diamondback moth (Plutella xylostella) phenology at Saskatoon SK. Values are based on model simulations (April 1-August 3, 2020).
Figure 4. Predicted diamondback moth (Plutella xylostella) phenology at Lacombe AB. Values are based on model simulations (April 1-August 3, 2020).

Monitoring:

Remove the plants in an area measuring 0.1 m² (about 12″ square). Beat them on to a clean surface and count the number of larvae (Fig. 5) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

This image has an empty alt attribute; its file name is DBM_Larva_AAFC.jpg
Figure 5. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.
This image has an empty alt attribute; its file name is DBM_Pupa_AAFC-1.jpg
Figure 6. Diamondback moth pupa within silken cocoon.

Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m² (approximately 1-2 larvae per plant).

This image has an empty alt attribute; its file name is DBM_adult_AAFC-1.png
Figure 7. Diamondback moth.

Biological and monitoring information for DBM is posted by Manitoba AgricultureSaskatchewan Agriculture, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the  “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide“.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Once the diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Warm growing conditions can quickly translate into multiple generations in a very short period!

Monitoring: Remove the plants in an area measuring 0.1 m² (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 1) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

This image has an empty alt attribute; its file name is DBM_Larva_AAFC.jpg
Figure 1. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.
This image has an empty alt attribute; its file name is DBM_Pupa_AAFC-1.jpg
Figure 2. Diamondback moth pupa within silken cocoon.

Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m² (approximately 1-2 larvae per plant).

This image has an empty alt attribute; its file name is DBM_adult_AAFC-1.png
Figure 3. Diamondback moth.

Biological and monitoring information for DBM is posted by Manitoba AgricultureSaskatchewan Agriculture, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the  “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide“.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

Diamondback moth

Once diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Warm growing conditions can quickly translate into multiple generations in a very short period!

Wind Trajectory Updates – Completed for 2020 growing season as of Week 09 (released June 22, 2020).

Weekly Pheromone-baited Trapping Results – Early season detection of diamondback moth is improved through the use of pheromone-baited delta traps deployed in fields across the Canadian prairies.  Click each province to access moth reporting numbers observed in AlbertaSaskatchewan and Manitoba as they become available. Check these sites to assess cumulative counts and relative risk in your geographic region.

Monitoring: Remove the plants in an area measuring 0.1 m² (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 1) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

Figure 1. Diamondback larva measuring ~8 mm long.Note brown head capsule and forked appearance of prolegs on posterior.
Figure 2. Diamondback moth pupa within silken cocoon.

Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m² (approximately 1-2 larvae per plant).

Figure 3. Diamondback moth.

Biological and monitoring information for DBM is posted by Manitoba AgricultureSaskatchewan Agriculture, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the  “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide“.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

Wind trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

The entire list of 2020 Wind Trajectory Reports is available here.

→ Read the WEEKLY Wind Trajectory Report for Wk10 (released June 22, 2020).

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

The entire list of 2020 Wind Trajectory Reports is available here.

→ Read the WEEKLY Wind Trajectory Report for Wk08 (released June 15, 2020).

Wind trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

The entire list of 2020 Wind Trajectory Reports is available here.

→ Read the WEEKLY Wind Trajectory Report for Wk07 (released June 8, 2020).

Wind trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

The entire list of 2020 Wind Trajectory Reports is available here.

→ Read the WEEKLY Wind Trajectory Report for Wk06 (released June 1, 2020).

Wind trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

The entire list of 2020 Wind Trajectory Reports is available here.

→ Read the WEEKLY Wind Trajectory Report for Wk05 (released May 25, 2020).

Wind trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

The entire list of 2020 Wind Trajectory Reports is available here.

→ Read the WEEKLY Wind Trajectory Report for Wk04 (released May 18, 2020).

→ Read the DAILY Wind Trjectory Reports for Wk04 (released May 20 and May 21).

Wind trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

Access the 2020 Wind Trajectory Reportsfor the first WEEKLY REPORT (11 May 2020).

New – Review the DAILY REPORT (released 15May2020).

Wind trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

Find the first WEEKLY report (available 11 May 2020).

Wind trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

Data not available this week.

Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Once diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Warm growing conditions can quickly translate into multiple generations in a very short period!

Monitoring:

Remove the plants in an area measuring 0.1 m² (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 1) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

Figure 1. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.
Figure 2. Diamondback moth pupa within silken cocoon.

Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m² (approximately 1-2 larvae per plant).

Figure 3. Diamondback moth.

Biological and monitoring information for DBM is posted by Manitoba AgricultureSaskatchewan Agriculture, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the  “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide“.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Once the diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Warm growing conditions can quickly translate into multiple generations in a very short period!

Monitoring:

Remove the plants in an area measuring 0.1 m² (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 1) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

Figure 1. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.
Figure 2. Diamondback moth pupa within silken cocoon.

Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m² (approximately 1-2 larvae per plant).

Figure 3. Diamondback moth.

Biological and monitoring information for DBM is posted by Manitoba AgricultureSaskatchewan Agriculture, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the  “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide“.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990’s.

In a continuing effort to produce timely information, the wind trajectory reports are available in two forms:

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

In a continuing effort to produce timely information, the wind trajectory reports are available in two forms:

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

In a continuing effort to produce timely information, the wind trajectory reports are available in two forms:

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

In a continuing effort to produce timely information, the wind trajectory reports are available in two forms:

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

In a continuing effort to produce timely information, the wind trajectory reports are available in two forms:

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

In a continuing effort to produce timely information, the wind trajectory reports are available in two forms:

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

In a continuing effort to produce timely information, the wind trajectory reports are available in two forms:

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

In a continuing effort to produce timely information, the wind trajectory reports are available in two forms:

Wind trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s. Trajectory models are used to deliver an early-warning system for the origin and destination of migratory invasive species, such as diamondback moth.  In addition, plant pathologists have shown that trajectories can assist with the prediction of plant disease infestations and are also beginning to utilize these same data. We receive two types of model output from ECCC: reverse trajectories and forward trajectories.

‘Reverse trajectories’ (RT) refer to air currents that are tracked back in time from specified Canadian locations over a five-day period prior to their arrival date.  Of particular interest are those trajectories that, prior to their arrival in Canada, originated over northwestern and southern USA and Mexico, anywhere diamondback moth populations overwinter and adults are actively migrating.  If diamondback adults are present in the air currents that originate from these southern locations, the moths may be deposited on the Prairies at sites along the trajectory, depending on the local weather conditions at the time that the trajectories pass over our area (e.g. rain showers, etc.). Reverse trajectories are the best available estimate of the ”true” 3D wind fields at a specific point. They are based on observations, satellite and radiosonde data.

‘Forward trajectories’ (FT) have a similar purpose; however, the modelling process begins at sites in USA & Mexico. The model output predicts the pathway of a trajectory. Again, of interest to us are the winds that eventually end up passing over the Prairies.

Ross Weiss (AAFC), Meghan Vankosky (AAFC) and Serge Trudel (ECCC)

DATE: APRIL 30, 2019

1. Reverse trajectories (RT)

a.  Pacific Northwest (PNW) – For the period of April 24-30 there have been 18 RTs (originating over ID, OR and WA) that have crossed over prairie locations.  By comparison, for the period of April  17-23 there were 51 RT’s. The majority PNW RTs have been reported to pass over southern AB.  Since March 23rd  Lethbridge AB has reported the highest number of PNW RTs (n=22), Beiseker AB  (n=15) and Olds AB (n=31).

Figure 1.  Daily total number of reverse trajectories (RTs) originating over Idaho, Oregon, and Washington that have crossed the Canadian prairies as of April 30, 2019.
Figure 2.  Total number of dates with PNW reverse trajectories originating over Idaho, Oregon, and Washington that have crossed the Canadian prairies (since March 23, 2019).
Figure 3.  List of PNW (Idaho, Oregon, and Washington) reverse trajectories that have crossed the prairies (since March 23, 2019).

b.  Mexico and SW USA (TX, CA) – No trajectories, originating over Mexico or southwest USA have crossed the prairies for the period of April 24-30, 2019. Since March 23, 2019 there have been 5 reverse trajectories that originated over Mexico, CA and TX. All five occurred on April 7.

c.  Texas and Oklahoma – No trajectories, originating over TX or OK have crossed the prairies for the period of April 24-30, 2019.  Since March 23, 2019 there have been 18 reverse trajectories that have originated over OK and TX. Most of these trajectories have crossed eastern SK and MB.

2.  Forward trajectories (FT) – 

The following table reports the origin of forward trajectories predicted to cross the prairies over the next five days (Note: ‘InitialDate’ refers to when the forward trajectory crossed the source location. Trajectories are predicted to cross prairie locations within five days of the initial date).  

In a continuing effort to produce timely information, wind trajectory reports will be available both DAILY and WEEKLY:

Weather forecasts (7 day):

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s. Trajectory models are used to deliver an early-warning system for the origin and destination of migratory invasive species, such as diamondback moth.  In addition, plant pathologists have shown that trajectories can assist with the prediction of plant disease infestations and are also beginning to utilize these same data. We receive two types of model output from ECCC: reverse trajectories and forward trajectories.

‘Reverse trajectories’ (RT) refer to air currents that are tracked back in time from specified Canadian locations over a five-day period prior to their arrival date.  Of particular interest are those trajectories that, prior to their arrival in Canada, originated over northwestern and southern USA and Mexico, anywhere diamondback moth populations overwinter and adults are actively migrating.  If diamondback adults are present in the air currents that originate from these southern locations, the moths may be deposited on the Prairies at sites along the trajectory, depending on the local weather conditions at the time that the trajectories pass over our area (e.g. rain showers, etc.). Reverse trajectories are the best available estimate of the ”true” 3D wind fields at a specific point. They are based on observations, satellite and radiosonde data.

‘Forward trajectories’ (FT) have a similar purpose; however, the modelling process begins at sites in USA & Mexico. The model output predicts the pathway of a trajectory. Again, of interest to us are the winds that eventually end up passing over the Prairies.

Ross Weiss (AAFC), Meghan Vankosky (AAFC) and Serge Trudel (ECCC)

DATE: APRIL 24, 2019

Reverse trajectories (RT)

a. Pacific Northwest (PNW) – For the period of April 17-23, 2019, there have been 55 RT’s (originating over ID, OR and WA) that have crossed over prairie locations (Figs. 1 and 2).  By comparison, for the period of April  10-16, 2019, there were 31 RT’s. The majority PNW RT’s have been reported to pass over southern AB.  Since March 23rd, Lethbridge AB has reported the highest number of PNW RT’s (n=20), Beiseker AB  (n=15) and Gainsborough SK (n=11).

Figure 1.  Daily total number of reverse trajectories originating over ID, OR, and WA that have crossed the prairies.
Figure 2. Total number of dates with PNW reverse trajectories originating over ID, OR, and WA that have crossed the prairies (since March 23, 2019).

b. Mexico and SW USA (TX, CA) – No trajectories, originating over Mexico or southwest USA have crossed the prairies for the period of April 17-23, 2019. Since March 23, 2019 there have been 5 reverse trajectories that originated over Mexico, CA and TX. All five occurred on April 7, 2019.

c. Texas and Oklahoma – No trajectories, originating over TX or OK have crossed the prairies for the period of April 17-23, 2019.  Since March 23, 2019 there have been 18 reverse trajectories that have originated over OK and TX (Fig. 3). Most of these trajectories have crossed eastern SK and MB.

Figure 3.  Total number of dates with reverse trajectories originating over OK and TX that have crossed the prairies (since March 23, 2019).

d. Nebraska and Kansas – No trajectories, originating over KS or NE have crossed the prairies for the period of April 17-23, 2019.  Since March 23, 2019 there have been 18 reverse trajectories that have originated over KS and NE (Fig. 4).

Figure 4. Total number of dates with reverse trajectories originating over KS and NE that have crossed the prairies (since March 23, 2019).

In a continuing effort to produce timely information, wind trajectory reports will be available both DAILY and WEEKLY:

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s.

In a continuing effort to produce timely information, the wind trajectory reports will be available both DAILY and WEEKLY:

2019 Risk and Forecast Maps for the Prairies

The 2019 Prairie-Wide Risk and Forecast Maps can be viewed and downloaded here.

Economically significant insect pests are monitored across the Canadian prairies each year, thanks to extensive networks of collaborators and cooperators.  In 2018, that effort culminated in 5764 survey stops across Manitoba, Saskatchewan, Alberta and the BC Peace!  

Here’s what’s included in the PDF file:

  • Average tempature, average precipitation, and modeled soil moisture for 2018.
  • A series of geospatial maps are included for each of the target species; the current map is followed by the previous 4 years.  
  • For some species, the geospatial maps represent 2018 distributions used to infer risk in the coming 2019 growing season.  Data is included for bertha armyworm, cabbage seedpod weevil, pea leaf weevil, wheat stem sawfly and diamondback moth.
  • For wheat midge and grasshoppers, the geospatial maps forecast or predict expected populations or risk for the 2019 growing season.  

The historical Risk and Forecast Maps (2015-2019) are available for review.  

These maps help the agricultural industry prepare to manage insect pests across the prairies and helps growers make crop choices and anticipate scouting priorities within their growing region. From May to July, the Weekly Updates will provide in-season updates, predictive model outputs plus scouting tips and links to relevant information.  

Thank you to the many people who monitor each growing season!

Wind Trajectories

Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990s. Trajectory models are used to deliver an early-warning system for the origin and destination of migratory invasive species, such as diamondback moth.  In addition, plant pathologists have shown that trajectories can assist with the prediction of plant disease infestations and are also beginning to utilize these same data. We receive two types of model output from ECCC: reverse trajectories and forward trajectories.

‘Reverse trajectories’ (RT) refer to air currents that are tracked back in time from specified Canadian locations over a five-day period prior to their arrival date.  Of particular interest are those trajectories that, prior to their arrival in Canada, originated over northwestern and southern USA and Mexico, anywhere diamondback moth populations overwinter and adults are actively migrating.  If diamondback adults are present in the air currents that originate from these southern locations, the moths may be deposited on the Prairies at sites along the trajectory, depending on the local weather conditions at the time that the trajectories pass over our area (e.g. rain showers, etc.). Reverse trajectories are the best available estimate of the ”true” 3D wind fields at a specific point. They are based on observations, satellite and radiosonde data.

‘Forward trajectories’ (FT) have a similar purpose; however, the modelling process begins at sites in USA & Mexico. The model output predicts the pathway of a trajectory. Again, of interest to us are the winds that eventually end up passing over the Prairies.

Ross Weiss (AAFC), Meghan Vankosky (AAFC) and Serge Trudel (ECCC)

DATE: APRIL 8, 2019

1.  Reverse trajectories (RT):
a.  Pacific Northwest (PNW) – For the period of April 2-8 there have been 69 RT’s (originating over the PNW) that have crossed over prairie locations.  Since March 23rd  Lethbridge has reported the highest number of PNW RT’s (n=9), followed by Olds AB, Beiseker AB and Dauphin MB (n=6).

List of PNW Reverse trajectories that have crossed the prairies (Since March 23, 2019):

b.  Mexico and SW USA (SW) – On April 7 the first Southwestern USA and Mexico RT’s crossed the prairies. These reverse trajectories originated over TX and CA.

The following maps present two examples of April 7, 2019 RT’s. The first map indicates that the RT crossing Tisdale originated across southern TX. The second map shows that two RT’s crossed over Regina. The red line indicates that this RT originated over southern TX. A second RT originated across central CA.

Tisdale SK, April 7, 2019

Regina SK, April 7, 2019

2.  Forward trajectories (FT) – 

The following table reports the origin of forward trajectories predicted to cross the prairies over the next five days.  Forward trajectories, originating over Santa Maria, CA are predicted to pass over SK and MB in the next five days.

Previous Posts

The following is a list of 2018 Posts – click to review:

Abundant parasitoids in canola – Week 10 
Alfalfa weevil – Week 6

Cabbage seedpod weevil – Week 12 
Cabbage root maggot – Week 11 
Cereal aphid manager (CAM) – Week 2
Cereal leaf beetle larvae request – Week 8
Crop protection guides – Week 2
Cutworms – Week 4

Diamondback moth – Week 7
Download the field guide – Week 10

Field heroes – Week 8
Flea beetles – Week 4

Monarch migration – Week 8

PMRA Pesticide Label Mobile App – Week 4

Scouting charts (canola and flax) – Week 3

Ticks and Lyme Disease – Week 4

Weather radar – Week 3
Wheat midge – Week 12

White grubs in fields – Week 8

Wind trajectories – Week 6
Wireworm distribution maps – Week 6

Previous Posts

The following is a list of 2018 Posts – click to review:

Abundant parasitoids in canola – Week 10
Alfalfa weevil – Week 6

Cabbage seedpod weevil – Week 8 
Cabbage root maggot – Week 11 
Cereal aphid manager (CAM) – Week 2
Cereal leaf beetle – Week 5
Cereal leaf beetle larvae request – Week 8
Crop protection guides – Week 2
Crop reports – Week 8
Cutworms – Week 4

Diamondback moth – Week 7
Download the field guide – Week 10

Field heroes – Week 8
Flea beetles – Week 4

Monarch migration – Week 8

Pea leaf weevil – Week 8
PMRA Pesticide Label Mobile App – Week 4

Scouting charts (canola and flax) – Week 3

Ticks and Lyme Disease – Week 4

Weather radar – Week 3
White grubs in fields – Week 8
Wind trajectories – Week 6
Wireworm distribution maps – Week 6

Previous Posts

The following is a list of 2018 Posts – click to review:

Abundant parasitoids in canola – Week 10

Alfalfa weevil – Week 6

Cabbage seedpod weevil – Week 8 
Cereal aphid manager (CAM) – Week 2
Cereal leaf beetle – Week 5
Cereal leaf beetle larvae request – Week 8
Crop protection guides – Week 2
Crop reports – Week 8
Cutworms – Week 4

Diamondback moth – Week 7
Download the field guide – Week 10

Field heroes – Week 8
Flea beetles – Week 4

Monarch migration – Week 8

Pea leaf weevil – Week 8
PMRA Pesticide Label Mobile App – Week 4

Scouting charts (canola and flax) – Week 3

Ticks and Lyme Disease – Week 4

Weather radar – Week 3
Wind trajectories – Week 6
Wireworm distribution maps – Week 6
White grubs in fields – Week 8

Abundant parastioids in canola!

The cabbage seedpod weevil is a chronic pest of canola in southern Alberta and south western Saskatchewan; it has recently reached Manitoba as well. The pest is managed with insecticides, which are sprayed at early flower. This year, in some canola fields around Lethbridge AB, an abundant parasitoid wasp was noticed at the time when fields may be sprayed. The wasp was identified as Diolcogaster claritibia (Fig. 1; thanks to Vincent Hervet and Jose Fernandez for confirming identification).

The wasp is a parasitoid that attacks diamondback moth larvae and recently abundant in some fields in 2017. In some of the fields sampled, as many parasitoids as cabbage seedpod weevil (i.e., nearly one per sweep) were observed. In the fields sampled (i.e., around 10), cabbage seedpod weevils were below thresholds on average, though some spots may have been close to the threshold of 2-3 weevils per sweep.

The above observation emphasizes the value of beneficial arthropods like Diolcogaster claritibia.  It is important to recognize that foliar applications of insecticides kill beneficial insects like this small wasp (about 2 mm) which attacks and helps regulate pest populations of diamondback moth or other Lepidoptera, including cutworms and cabbage worms. Thus, think beneficials before you spray!

Figure 1.  Diolcagaster claritibia adult measuring ~2mm in length (Photo credit J. Fernandez, AAFC-Ottawa).

Learn more about beneficials by accessing Field Heroes and all the Blog’s Parasitoid posts.

Previous Posts

The following is a list of 2018 Posts – click to review:

Alfalfa weevil – Week 6

Cabbage seedpod weevil – Week 8 
Cereal aphid manager (CAM) – Week 2
Cereal leaf beetle – Week 5
Cereal leaf beetle larvae request – Week 8
Crop protection guides – Week 2
Crop reports – Week 8
Cutworms – Week 4

Diamondback moth – Week 7

Field heroes – Week 8
Flea beetles – Week 4

Monarch migration – Week 8

Pea leaf weevil – Week 8
PMRA Pesticide Label Mobile App – Week 4

Scouting charts (canola and flax) – Week 3

Ticks and Lyme Disease – Week 4

Weather radar – Week 3
West nile virus – Week 8
Wind trajectories – Week 6
Wireworm distribution maps – Week 6
White grubs in fields – Week 8

Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Once the diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Warm growing conditions can quickly translate into multiple generations in a very short period!


Monitoring:

Remove the plants in an area measuring 0.1 m² (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 1) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.


Figure 1. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.


Figure 2. Diamondback moth pupa within silken cocoon.


Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1  (approximately 1-2 larvae per plant).

Figure 3. Diamondback moth.


Across the prairies, provincial staffs coordinate diamondback pheromone trapping during the growing season.  Every spring, the early arrival of diamondback moths (Fig. 3) is monitored through the tracking of high level air masses that originate from the south of North America and arrive across the Canadian prairies. Additionally, pheromone traps are deployed to intercept the initial moths.  Cumulative male moth counts occurring over a 6-7 week period of trapping are used to estimate relative risk for the growing season.  Vast networks of cooperators across Manitoba, Saskatchewan, Alberta, and the BC Peace work with their provincial entomologists to generate the following in-season results: 



● Counts are summarized by Saskatchewan Agriculture (updated June 15, 2018, by J. Tansey):



● Manitoba Agriculture generally reports low DBM counts so far but review the specifics by region within the latest Insect and Disease Update (June 6, 2018).  


● Alberta Agriculture and Forestry has a live 2018 map reporting Diamondback moth pheromone trap interceptions.  A copy of the map (retrieved June 21, 2018) is below for reference.



Biological and monitoring information for DBM is posted by Manitoba AgricultureSaskatchewan AgricultureAlberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

Wind trajectories

Background:  Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories to deliver an early-warning system for the origin and destination of migratory invasive agricultural pests.

We receive two types of model output from ECCC: reverse trajectories (RT) and forward trajectories (FT): 

(i) ‘Reverse trajectories’ (RT) refer to air currents that are tracked back in time from specified Canadian locations over a five-day period prior to their arrival date. 

(ii) ‘Forward trajectories’ (FT) have a similar purpose; however, the modelling process begins at sites in USA and Mexico. The model output predicts the pathway of a trajectory. Again, of interest are the winds that eventually end up passing over the Prairies. 

Current Data
Since April 1. 2018, the majority of Pacific Northwest (PNW) air currents have crossed over southern AB (Fig. 1). The cumulative number of wind dispersal events for June 1 – 11, 2018 (181) is greater than the long term (2007 – 2017) average (98).

Figure 1.  Total reverse trajectories (originating from US – PNW) April 1 – June 11, 2018.



Since April 1, the majority of air currents from southwest USA and Mexico have crossed over eastern SK and western MB (Fig. 2). So far there have been 18 RT’s (June 1 – 11, 2018) and compares with 2017 (3) and the long term average (24). 

Figure 2.  Total number of reverse trajectories (originating from southern USA) April 1 – June 11, 2018.





Weather forecasts (7 day):

Wind trajectories

Background:  Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories to deliver an early-warning system for the origin and destination of migratory invasive agricultural pests.

We receive two types of model output from ECCC: reverse trajectories (RT) and forward trajectories (FT): 

(i) ‘Reverse trajectories’ (RT) refer to air currents that are tracked back in time from specified Canadian locations over a five-day period prior to their arrival date. 

(ii) ‘Forward trajectories’ (FT) have a similar purpose; however, the modelling process begins at sites in USA and Mexico. The model output predicts the pathway of a trajectory. Again, of interest are the winds that eventually end up passing over the Prairies. 

Current Data
The number of Reverse Trajectories (RTs), crossing the prairies in May 2018, was lower than the long term average (2007 – 2017). The total number of incoming trajectories (sum of Pacific Northwest and southwest USA/Mexico) for 2018 was less than similar values for 2017 and 2007 – 2017. Based on RTs by region, the number of RTs from the Pacific Northwest (PNW) was less than 2007 – 2017 and 2017. To date, the RTs originating in the southwest USA/Mexico in 2018, have been greater in number than in 2017 and less than the long term average (Fig. 1).

Figure 1.  Total number of reverse trajectories by geographic region (Pacific Northwest and
Mexico and the southwest USA) for May 2018.

Weather forecasts (7 day):

Wind trajectories

Background:  Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories to deliver an early-warning system for the origin and destination of migratory invasive agricultural pests.


We receive two types of model output from ECCC: reverse trajectories (RT) and forward trajectories (FT): 

(i) ‘Reverse trajectories’ (RT) refer to air currents that are tracked back in time from specified Canadian locations over a five-day period prior to their arrival date. 

(ii) ‘Forward trajectories’ (FT) have a similar purpose; however, the modelling process begins at sites in USA and Mexico. The model output predicts the pathway of a trajectory. Again, of interest are the winds that eventually end up passing over the Prairies. 


Current Data


Since May 21, 2018, the number of incoming trajectories (RTs) crossing the prairies has increased, particularly from California, Texas and Mexico (Fig. 1). The increased number of reverse trajectories could result in increased introductions of insects into the prairies.

Figure 1.  Daily total number of reverse trajectories, originating over the Pacific Northwest AND
Southwest of the USA, that have entered the Canadian prairies (May 1-28, 2018).





Weather forecasts (7 day):

Wind trajectories

Background.  Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories to deliver an early-warning system for the origin and destination of migratory invasive agricultural pests. 

We receive two types of model output from ECCC: reverse trajectories (RT) and forward trajectories (FT): 


(i) ‘Reverse trajectories’ (RT) refer to air currents that are tracked back in time from specified Canadian locations over a five-day period prior to their arrival date. 


(ii) ‘Forward trajectories’ (FT) have a similar purpose; however, the modelling process begins at sites in USA and Mexico. The model output predicts the pathway of a trajectory. Again, of interest are the winds that eventually end up passing over the Prairies. 

Current Data

Pacific Northwest (PNW) – The total number of RT’s from the Pacific Northwest of the United States, for the period between May 1 – 22, 2018, was n=67.  This was significantly less than in 2017 (n=226), as well as the long term average (n=166) (Fig. 1).

Figure 1. Daily total number of reverse trajectories originating over the Pacific Northwest of
the United States that have entered the prairies (May 1-22, 2018).

Weather forecasts (7 day):

Wind trajectories

Background.  Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990’s. Trajectory models are used to deliver an early-warning system for the origin and destination of migratory invasive species, such as diamondback moth.  In addition, plant pathologists have shown that trajectories can assist with the prediction of plant disease infestations and are also beginning to utilize these same data. 


We receive two types of model output from ECCC: reverse trajectories (RT) and forward trajectories (FT): 
(i) Reverse trajectories refer to air currents that are tracked back in time from specified Canadian locations over a five-day period prior to their arrival date.  Of particular interest are those trajectories that, prior to their arrival in Canada, originated over northwestern and southern USA and Mexico, anywhere diamondback moth populations overwinter and adults are actively migrating.  If diamondback adults are present in the air currents that originate from these southern locations, the moths may be deposited on the Prairies at sites along the trajectory, depending on the local weather conditions at the time that the trajectories pass over our area (e.g. rain showers, etc.). RTs are the best available estimate of 3D wind fields at a specific point. They are based on observations, satellite and radiosonde data. 

(ii) Forward trajectories have a similar purpose; however, the modelling process begins at sites in USA and Mexico. The model output predicts the pathway of a trajectory. Again, of interest to us are the winds that eventually end up passing over the Prairies. 

Current Data

Pacific Northwest (PNW) – The number of RTs, predicted to cross the prairies, has increased over the past week (Fig. 1). Though there has been an increase, results for May 1-14 predicted that 38 PNW reverse trajectories (RT) have crossed the prairies. This total is less than the average number 107 (based on 2007-2017) and well below last year’s results (155). 

Figure 1. Daily total of reverse trajectories (RT) originating over the Pacific Northwest that
have entered the prairies during April 2018.

Weather forecasts (7 day):

Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html 

Wind trajectories

Background.  Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have been working together to study the potential of trajectories for monitoring insect movements since the late 1990’s. Trajectory models are used to deliver an early-warning system for the origin and destination of migratory invasive species, such as diamondback moth.  In addition, plant pathologists have shown that trajectories can assist with the prediction of plant disease infestations and are also beginning to utilize these same data. 



We receive two types of model output from ECCC: reverse trajectories (RT) and forward trajectories (FT): 
(i) Reverse trajectories refer to air currents that are tracked back in time from specified Canadian locations over a five-day period prior to their arrival date.  Of particular interest are those trajectories that, prior to their arrival in Canada, originated over northwestern and southern USA and Mexico, anywhere diamondback moth populations overwinter and adults are actively migrating.  If diamondback adults are present in the air currents that originate from these southern locations, the moths may be deposited on the Prairies at sites along the trajectory, depending on the local weather conditions at the time that the trajectories pass over our area (e.g. rain showers, etc.). RTs are the best available estimate of 3D wind fields at a specific point. They are based on observations, satellite and radiosonde data. 


(ii) Forward trajectories have a similar purpose; however, the modelling process begins at sites in USA and Mexico. The model output predicts the pathway of a trajectory. Again, of interest to us are the winds that eventually end up passing over the Prairies. 


Current Data

Pacific Northwest (PNW) – The number of RTs predicted to cross the prairies from the PNW, has increased over the last few days. Model runs for May 7th predicted that seven RTs will cross over AB and SK in the next 24 hours from the PNW. Based on results for April, there have been fewer RTs in 2018 than 2017. The number of RTs were greatest across southern AB (Fig. 1). The majority of these crossed the prairies in mid-April (Fig. 2).

Figure 1. Total number of reverse trajectories, originating over the US PNW, that
has entered the prairies during April, 2018.
Figure 2. Daily total number of reverse trajectories, originating over the US PNW, that
have entered the prairies during April, 2018.



Weather forecasts (7 day):

Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html 

Weekly Update – Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Based on Harcourt (1954), this week the DBM model was run with a biofix date of May 21. The following map illustrates that potentially three generations (after the migratory population) may have been completed across most of the prairies. 



REMINDER – Once diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Remove the plants in an area measuring 0.1 m² (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 1) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.  The economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1  (approximately 1-2 larvae per plant).


Figure 1. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.


Figure 2. Diamondback moth pupa within silken cocoon.


Biological and monitoring information for DBM is posted by Manitoba Agriculture, Food and Rural DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.


Figure 3. Diamondback moth.


Across the prairies, provincial staff coordinate diamondback pheromone trapping during the growing season:

● Low numbers of moths have been reported across Saskatchewan for the 2017 pheromone monitoring.  
● Manitoba Agriculture and Rural Initiatives posted low DBM counts which can be reviewed here.  
● Alberta Agriculture and Forestry has a live 2017 map reporting Diamondback moth pheromone trap interceptions.  A copy of the map (retrieved July 20, 2017) is below for reference.

Weekly Update – Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Last week, biofix dates were used to predict the number of generations of DBM as of July 24, 2017.  That data predicted the completion of two generations of DBM across the Canadian prairies.  The number of generations, combined with the recent heat, has resulted in densities of DBM above threshold in some fields this week!  In-field scouting is critical and necessary to protect developing pods since DBM larvae will feed on the exterior which can render pods prone to shattering even in high temperatures and high winds or during swathing and direct-harvesting.  

REMINDER – Once diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Remove the plants in an area measuring 0.1 m² (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 4) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.  The economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1  (approximately 1-2 larvae per plant).


Figure 4. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.


Figure 5. Diamondback moth pupa within silken cocoon.


Biological and monitoring information for DBM is posted by Manitoba Agriculture, Food and Rural DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.


Figure 6. Diamondback moth.


Across the prairies, provincial staff coordinate diamondback pheromone trapping during the growing season:

● Low numbers of moths have been reported across Saskatchewan for the 2017 pheromone monitoring.  
● Manitoba Agriculture and Rural Initiatives posted low DBM counts which can be reviewed here.  
● Alberta Agriculture and Forestry has a live 2017 map reporting Diamondback moth pheromone trap interceptions.  A copy of the map (retrieved July 20, 2017) is below for reference.

Weekly Update – Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Throughout April and May, both forward and backward wind trajectory data was compiled weekly to identify potential DBM arrival events from southerly source areas including Mexico and southwest USA or the Pacific Northwest.  This week, two biofix dates were selected as “starting points” used to apply the DBM model based on Harcourt (1954).  By selecting and presenting mapped model outputs for both a biofix date of May 1 (Fig. 1) AND May 21 (Fig. 3), the predicted number of generations of DBM can be estimated across the Canadian prairies as of July 24, 2017. The following maps indicate that potentially two generations have been completed across most of the prairies for both biofix dates (Fig. 1 and 3). 

Using Biofix of May 1Based on the biofix date of May 1, 2017, the model predicts two generations of DBM (e.g., areas highlighted in yellow) whereas southern Alberta populations are potentially in the third generation (Fig. 1).  The second map (Fig. 2), showing predicted results for Long Term Normal (LTN) data, indicates that populations in southern Alberta and the Peace River region are ahead of normal development (based on May 1 introductions)

Figure 1.  Predicted number of generations of Diamondback moth based on a biofix date of May 1, 2017.
Figure 2.  Predicted number of generations of Diamondback moth based on a biofix date of
May 1, 2017, but using Long Term Normal (LTN) data.

Using Biofix of May 21 – In the following scenario using biofix date of May 21, 2017 (Fig. 3), the number of generations of DBM are marginally behind the early May introduction presented above in Figure 1.

Figure 3.  Predicted number of generations of Diamondback moth based on a biofix date of May 21, 2017.


REMINDER – Once diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Remove the plants in an area measuring 0.1 m² (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 4) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.  The economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1  (approximately 1-2 larvae per plant).


Figure 4. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.


Figure 5. Diamondback moth pupa within silken cocoon.



Biological and monitoring information for DBM is posted by Manitoba Agriculture, Food and Rural DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.


Figure 6. Diamondback moth.


Across the prairies, provincial staff coordinate diamondback pheromone trapping during the growing season:

● Low numbers of moths have been reported across Saskatchewan for the 2017 pheromone monitoring.  
● Manitoba Agriculture and Rural Initiatives posted low DBM counts which can be reviewed here.  
● Alberta Agriculture and Forestry has a live 2016 map reporting Diamondback moth pheromone trap interceptions.  A copy of the map (retrieved July 20, 2017) is below for reference.

Weekly Update – Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Once the diamondback moth is present in the area, it is important to monitor individual canola fields for larvae


Remove the plants in an area measuring 0.1 m² (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 1) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.


Figure 1. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.



Figure 2. Diamondback moth pupa within silken cocoon.



Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1  (approximately 1-2 larvae per plant).


Biological and monitoring information for DBM is posted by Manitoba Agriculture, Food and Rural DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.



Reminder – Pheromone traps attracting male Diamondback moths (Fig. 3) have been deployed across the prairies.  

Figure 3. Diamondback moth.


Across the prairies, provincial staff coordinate diamondback pheromone trapping during the growing season:

● Counts will be reported by the provincial staff in Saskatchewan.  
● Manitoba Agriculture and Rural Initiatives posted low DBM counts which can be reviewed here.  
● Alberta Agriculture and Forestry has a live 2016 map reporting Diamondback moth pheromone trap interceptions.  A copy of the map (retrieved July 20, 2017) is below for reference.

2017 Wind Trajectories

THE WEEK OF JUNE 15, 2017


Reverse trajectories (RT)
There were 139 reverse trajectories that were predicted to pass across Alberta and Saskatchewan from the Pacific Northwest between May 26 and June 8.  

Forward trajectories (FT) 
The following map indicates the origin of forward trajectories predicted to cross the prairies over the next five days. There have been an increased number of winds that have crossed the prairies from the southwest USA and Mexico since June 1.


2017 Wind Trajectories

THE WEEK OF MAY 29, 2017:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of May 23, 2017:

Reverse trajectories (RT)

Overall, the number of RTs entering the prairies from the Pacific
Northwest has been lower than average. The map (Fig. 1) shows that the greatest number
of RTs from the Pacific Northwest continued to be across southern Alberta.


Figure 1. Number of Reverse Trajectories (RT) originating in the Pacific Northwest that
arrived at sites across the Canadian prairies from April 1-May 29, 2017.


Weather forecasts (7 day):

Weekly Update – Previous Posts

The following is a list of 2017 Posts – click to review:

Canola scouting chart

Crop protection guides

Diamondback moth

Flax scouting chart


Iceberg reports



Lily leaf beetle



Ticks and Lyme disease

2017 Wind Trajectories

THE WEEK OF MAY 23, 2017:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of May 23, 2017:

Reverse trajectories (RT)

Between May 16 and 23 there were 57 RT’s from the Pacific Northwest of USA that crossed the prairies. The first chart (Fig. 1) indicates site specific results for PNW RT’s for each day of the past week. Values reflect the fact that PNW RT’s were lower this week than previous weeks. The greatest number of PNW RT’s continued to be across southern AB (Fig. 2).

Figure 1. Cumulative number of Reverse Trajectories (RT) originating from the Pacific Northwest arriving across the Canadian prairies from May 16-23, 2017 (Olfert et al. 2017).


Figure 2. Number of Reverse Trajectories (RT) originating in the Pacific Northwest that arrived at sites across the Canadian prairies from April 1-May 23, 2017.



Forward trajectories (FT)
No FTs originating from Mexico or southwest USA/Mexico are predicted to cross the prairies over the next 5 days.  The following map provides an overview of FTs that have crossed the prairies during the 2017 growing season.

Figure 2.  Total number of reverse trajectories originating from the Pacific Northwest of the USA arriving at sites across the Canadian prairies (April 1-May 23, 2017).


Weather forecasts (7 day):

Weekly Update – Previous Posts

The following is a list of 2017 Posts – click to review:


Canola scouting chart

Crop protection guides


Diamondback moth



Flax scouting chart



Iceberg reports

Wind Trajectories

THE WEEK OF MAY 15, 2017:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of May 15, 2017:

Reverse trajectories (RT)

Wind trajectories have been monitored since April 1 this year.  Wind patterns continue to be similar to previous weeks. The first graph (Fig. 1) indicates that winds from the Pacific Northwest (PNW) passed over Carman MB each day of the past week. Though the number of RTs increased over the past week, the overall pattern  has not changed across the prairies. 

Figure 1. Number of Reverse Trajectories (RT) originating in the Pacific Northwest that have arrived at sites across the Canadian prairies from May 9-15, 2017.



Figure 2 shows that the greatest number of RTs continue to be settling at sites across southern Alberta (e.g., areas highlighted red).

Figure 2.  Total number of reverse trajectories originating from the Pacific Northwest of the USA arriving at sites across the Canadian prairies (April 1-May 15, 2017).
Weather forecasts (7 day):

Weekly Update – Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Review the post from May 11, 2017 (Wk 02).

2017 Wind Trajectories

THE WEEK OF MAY 1, 2017:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of May 9, 2017:

Reverse trajectories (RT)

Wind trajectories have been monitored since April 1 this year.  This week there was an increase in the number of RT winds that crossed the prairies from the Pacific Northwest (PNW) of USA.  In Alberta, Grande Prairie and Beiseker had a significant increase in the number of RT winds over this past week (Fig. 1 and 2). In addition to the PNW, there were three prairie locations (Selkirk MB, Unity SK and Olds AB) that had winds originating from California and Texas. 

Figure 1. Weekly cumulative counts of Reverse Trajectories (RT) from the Pacific Northwest (PNW) from May 3-9, 2017 (2017 Olfert et al.).


Figure 2. Total number of RT winds from the Pacific Northwest from April 1-May 9, 2017.

Forward trajectories (FT)
Similar to Reverse Trajectories, most of the model output of Forward Trajectories (FT) have originated from the Pacific Northwest (PNW).  However, a few winds have been forecasted to cross the prairies from the southern USA since April 1, 2017 (Fig. 3).

Figure 3. Source destinations and number of FT winds originating from the USA between April 1-May 9, 2017.

Weather forecasts (7 day):
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html

Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Pheromone traps attracting male Diamondback moths are being deployed across the prairies.  High altitude air masses are tracked by AAFC-Saskatoon Staff (forward and backward trajectories).  These wind events have the potential to aid the movement of diamondback moth and aster leafhoppers northward on to the Canadian prairies from Mexico, southern and central USA as well as the Pacific Northwest.  Diamondback moth pheromone traps deployed across the prairies confirm their arrival – many thanks to the people who deploy and do the weekly monitoring!




Alberta Agriculture and Forestry has a live 2017 map reporting Diamondback moth pheromone trap interceptions.  Watch for updates from Manitoba and Saskatchewan as growing season progresses.


Biological and monitoring information for DBM is posted by Manitoba Agriculture, Food and Rural DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

2017 Wind Trajectories

THE WEEK OF MAY 1, 2017:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of May 1, 2017:

Reverse trajectories (RT)

Wind trajectories have been monitored since April 1 this year.  To date, winds have originated predominantly from the USA – Pacific Northwest (PNW).   Overall results indicate that eastern locations on the prairies have had fewer of these winds than western locations (Figure 1).  Over the last week (April 25- May 1, 2017), Lethbridge has had significantly more RT’s from the Pacific Northwest than either SK and MB sites (Figure 2).  

Figure 1. Summary of reverse trajectory wind data (PNW) for the
prairies April 1-May 1, 2017.
Figure 2. Based on results for specific locations (Brandon,
Saskatoon, Lethbridge), Lethbridge has had significantly more RT’s from the
Pacific Northwest than SK and MB.  


Forward trajectories (FT)
Forward trajectories that were predicted to cross the prairies from the southern USA and Mexico have been limited so far. There were a few isolated days of winds from Santa Maria and Imperial Valley, CA. and from Mexicali, Mexico in mid-April.



Weather forecasts (7 day):
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html

Weekly Update – Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Pheromone traps attracting male Diamondback moths are being deployed across the prairies.  High altitude air masses are tracked by AAFC-Saskatoon Staff (forward and backward trajectories).  These wind events have the potential to aid the movement of diamondback moth and aster leafhoppers northward on to the Canadian prairies from Mexico, southern and central USA as well as the Pacific Northwest.  Diamondback moth pheromone traps deployed across the prairies confirm their arrival – many thanks to the people who deploy and do the weekly monitoring!



Biological and monitoring information for DBM is posted by Manitoba Agriculture, Food and Rural DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  


More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

2017 Risk and Forecast Maps for the Prairies

The 2017 Prairie-Wide Risk and Forecast Maps can be viewed and downloaded here. Maps are generated for bertha armyworm, grasshoppers, wheat midge, cabbage seedpod weevil, pea leaf weevil, wheat stem sawfly, diamondback moth as well as average temperature, average precipitation, and modeled soil moisture for the Canadian prairies.


Thank you to the many people who monitor each growing season!  An astonishing 6414 survey stops were involved in the insect monitoring performed across the Canadian prairies in 2016!


Manitoba insect survey and forecast maps

Manitoba posts their 2016 Insect Survey and 2017 Forecast Maps up on their website! Take a moment to look over the following forecasts:

Manitoba growers can access general information on pest and beneficial insects from a series of fact sheets posted at the Insect section of their website.

More information related to the above maps and insects can be obtained by contacting Manitoba Agriculture entomologist John Gavloski.

Wind Trajectories

THE WEEK OF JUNE 13, 2016:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of  June 13, 2016:

Reverse trajectories (RT)
Mexico and southwest USA – This week, Grande Prairie (June 7) had the first report of a Reverse Trajectory crossing over southwest US and Mexico crossing. Other sites included Selkirk, Portage, Carman and Brandon.

The map below represents the distribution of RTs from the prairies that originated over southwest US and Mexico.


Forward trajectories (FT) 
There were 17 Forward Trajectories from southwest US (12) and Mexico (5) that were predicted to cross the prairies over the next five days.



Weather forecasts (7 day):
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html


Downloadable versions of the Wind Trajectory Updates are available here.

Weekly Update – Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Once the diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Remove the plants in an area measuring 0.1 m2 (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 2) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

Figure 2. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.


Figure 3. Diamondback moth pupa within silken cocoon.

Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1 m2 (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m2 (approximately 1-2 larvae per plant).


Biological and monitoring information for DBM is posted by Manitoba Agriculture, Food and Rural DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.







Reminder – Pheromone traps attracting male Diamondback moths (Fig. 1) have been deployed across the prairies.  

Figure 1. Diamondback moth.


Across the prairies, provincial staff coordinate diamondback pheromone trapping during the growing season:
● Counts will be reported by the provincial staff in Saskatchewan.  
● Manitoba Agriculture and Rural Initiatives posted low DBM counts which can be reviewed within their second Insect Report.  
● Alberta Agriculture and Forestry has a live 2016 map reporting Diamondback moth pheromone trap interceptions.  A copy of the map (retrieved June 8, 2016) is below for reference.

Wind Trajectories

Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies.

THE WEEK OF June 6, 2016:  Nothing to report this week!

Wind Trajectories

Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies.


THE WEEK OF June 6, 2016:  Nothing to report this week!

Weekly Update – Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Pheromone traps attracting male Diamondback moths (Fig. 1) have been deployed across the prairies.  

Figure 1. Diamondback moth.


Counts will be reported by the provincial staff in Saskatchewan.  Manitoba Agriculture and Rural Initiatives posted low DBM counts which can be reviewed within their second Insect Report.  Alberta Agriculture and Forestry has a live 2016 map reporting Diamondback moth pheromone trap interceptions.  A copy of the map (retrieved June 1, 2016) is below for reference.


Larval Monitoring:
Once the diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Remove the plants in an area measuring 0.1 m2 (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 2) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.
Figure 2. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.


Figure 3. Diamondback moth pupa within silken cocoon.
Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1 m2 (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m2 (approximately 1-2 larvae per plant).


More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

Wind Trajectories

THE WEEK OF MAY 30, 2016:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of May 30, 2016:

Reverse trajectories (RT)
Mexico and southwest USA – Gainsborough SK and Carman MB continue to have RT’s that originate across southwestern USA  and Mexico this week.  





The following are RTs originating from the Pacific Northwest of the USA:




Forward trajectories (FT) 
None to report this week. 



Weather forecasts (7 day):
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html


Downloadable versions of the Wind Trajectory Updates are available here.

Wind Trajectories

THE WEEK OF MAY 30, 2016:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of May 30, 2016:

Reverse trajectories (RT) – Mexico and southwest USA
Gainsborough SK and Carman MB continue to have RT’s that originate across southwestern USA  and Mexico this week.  

Reverse Trajectories originating from Mexico and southwest USA between April 1-May 30, 2016:



Forward trajectories (FT) 
No forward trajectories  from southwestern USA so far this week. 





Weather forecasts (7 day):
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html




Downloadable versions of the Wind Trajectory Updates are available here.

Wind Trajectories

THE WEEK OF MAY 24, 2016:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of May 24, 2016:


Reverse trajectories (RT) – Mexico and southwest USA
Compared to 2015, the number of reverse trajectories crossing the prairies is greater in 2016.  Since April 1, there have been 18 prairie locations that have had RT’s originating from southwest USA. This compares with 12 for the same time last year. 

Reverse Trajectories originating from Mexico and southwest USA between April 1-May 24, 2016:





…..Compared to last year!






Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Pheromone traps attracting male Diamondback moths (Fig. 1) have been deployed across the prairies.  

Figure 1. Diamondback moth.



Counts will be reported by the provincial staff in Saskatchewan.  Manitoba Agriculture and Rural Initiatives posted low DBM counts which can be reviewed within their second Insect Report.  Alberta Agriculture and Forestry has a live 2016 map reporting Diamondback moth pheromone trap interceptions.  A copy of the map (retrieved May 25, 2016) is below for reference.





Larval Monitoring:
Once the diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Remove the plants in an area measuring 0.1 m2 (about 12″ square), beat them on to a clean surface and count the number of larvae (Fig. 2) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

Figure 2. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.




Figure 3. Diamondback moth pupa within silken cocoon.

Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1 m2 (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m2 (approximately 1-2 larvae per plant).


Biological and monitoring information for DBM is posted by Manitoba Agriculture, Food and Rural DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  

More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.


Wind trajectories

2016 Wind Trajectories – High altitude air masses originate from southern locations and continuously move northerly to Canadian destinations. Insect pest species such as Diamondback moth and Aster leafhoppers, traditionally unable to overwinter above the 49th parallel, can utilize these air masses in the spring to move north from Mexico and the United States (southern or Pacific northwest). Data acquired from Environment Canada is compiled by Olfert et al. (AAFC-Saskatoon) to track and model spring high altitude air masses with respect to potential introductions of insect pests onto the Canadian prairies. 

Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies.


This week, Reverse Trajectories (RT) originating from southwest USA and Mexico have crossed over more than half of the prairie locations (18 of 29 locations). This week, first reports of these RT’s occurred for Russel MB, Gainsborough SK, Yorkton SK, Grenfell SK, Watrous SK, and Kindersley SK. 








Review earlier 2016 Wind Trajectory Updates in PDF format.


Weather forecasts (7 day):
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html

Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html

Weekly Update – Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Pheromone traps attracting male Diamondback moths have been deployed across the prairies.  



Counts will be reported by the provincial staff in Manitoba and Saskatchewan soon.  Alberta Agriculture and Forestry has posted their live 2016 map reporting Diamondback moth pheromone trap interceptions.  A copy of the map (retrieved May 18, 2016) is below for reference.



Biological and monitoring information for DBM is posted by Manitoba Agriculture, Food and Rural Development, Saskatchewan Agriculture, Alberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  




More information about Diamondback moths can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Diamondback moth page but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

Wind trajectories

2016 Wind Trajectories – High altitude air masses originate from southern locations and continuously move northerly to Canadian destinations. Insect pest species such as Diamondback moth and Aster leafhoppers, traditionally unable to overwinter above the 49th parallel, can utilize these air masses in the spring to move north from Mexico and the United States (southern or Pacific northwest). Data acquired from Environment Canada is compiled by Olfert et al. (AAFC-Saskatoon) to track and model spring high altitude air masses with respect to potential introductions of insect pests onto the Canadian prairies. 

Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies.


As of May 9, 2016, Reverse Trajectories (RTs) originating from Mexico and southwest USA have crossed most prairie locations:






Whereas Reverse Trajectories (RTs) originating from northwest USA have arrived over a greater area of the prairies with more RTs arriving in Alberta and the BC Peace:

Review the 2016 Wind Trajectory Updates in PDF format.


Weather forecasts (7 day):
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html

Wind Trajectories

THE WEEK OF MAY 9, 2016:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of May 9, 2016:

Reverse trajectories (RT)
Naicam, Regina, Tisdale (Saskatchewan) and Lethbridge, Beiseker (Alberta) had the first occurrences of Reverse Trajectories this week that originated from southwestern USA and /or Mexico.


Forward Trajectories (FT)
There are four forward trajectories from California and Texas that are predicted to cross the prairies over the next 5 days.  Below is a map of the sites from which the Forward Trajectories originated that crossed the prairies over the past month.


Review the 2016 Wind Trajectory Updates in PDF format.


Weather forecasts (7 day):
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html

Wind trajectories

2016 Wind Trajectories – High altitude air masses originate from southern locations and continuously move northerly to Canadian destinations.  Insect pest species such as Diamondback moth and Aster leafhoppers, traditionally unable to overwinter above the 49th parallel, can utilize these air masses in the spring to move north from Mexico and the United States (southern or Pacific northwest).  Data acquired from Environment Canada is compiled by Olfert et al. (AAFC-Saskatoon) to track and model spring high altitude air masses with respect to potential introductions of insect pests onto the Canadian prairies.  

Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies.

As of May 2, 2016, Reverse Trajectories (RTs) originating from Mexico and southwest USA have been arriving across the prairies:







Whereas Reverse Trajectories (RTs) originating from northwest USA have arrived over a greater area of the prairies with more RTs  arriving in Alberta and the BC Peace:



Wind trajectory data processing by AAFC-Saskatoon Staff began in April and those reports were posted for:

Weekly Update – Diamondback moth

Diamondback moth (Plutellidae: Plutella xylostella) – Pheromone traps attracting male Diamondback moths have been deployed across the prairies.  



Counts will be reported by the provincial staff in Manitoba and Saskatchewan soon.  Alberta Agriculture and Forestry has posted their live 2016 map reporting Diamondback moth pheromone trap interceptions.  A copy of the map (retrieved May 5, 2016) is below for reference.

Wind Trajectories

THE WEEK OF APRIL 20-25, 2016:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of April 15-20, 2016:


Reverse trajectories (RT)
None to report for this period.


Forward Trajectories (FT)
For several weeks now, the wind model continues to predict that Forward Trajectories, arriving from southwest US and Mexico, will cross the prairies over the next few days. 

Review the 2016 Wind Trajectory Updates in pdf format.




Weather forecasts (7 day):
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html

Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html

Wind Trajectories

THE WEEK OF APRIL 15-20, 2016:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of April 15-20, 2016:

Reverse trajectories (RT)
None to report for this period.
Forward Trajectories (FT)
This week there are again three forward trajectories from southern USA and Mexico that are predicted to cross Alberta, Saskatchewan, and Manitoba over the next few days. 

In summary, the following table is a compilation of the number of Forward Trajectories predicted to have crossed the prairies to date, by point of origin.

Weather forecasts (7 day)
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html

Wind Trajectories

THE WEEK OF APRIL 10-15, 2016:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of April 10-15, 2016:


Reverse trajectories (RT)
None to report for this period.


Forward Trajectories (FT)
The wind trajectory model continues to predict that Forward Trajectories, arriving from the US southwest and Mexico, will cross the prairies over the next few days.





Over the past weeks, the greatest number of Forward Trajectories (n=10) that were predicted to arrive on the prairies came from the Imperial Valley in California.

Wind trajectories

Wind trajectories Related to Diamondback Moth (DBM) and Aster Leafhopper Introductions
BACKGROUND:  Potential wind events capable of carrying insect pests from source areas in the USA can be identified by following trajectories for air parcels through time. High altitude air masses, originating from southern locations, frequently move northerly to Canadian destinations. Insect pest species such as Diamondback moth and Aster leafhoppers, traditionally unable to overwinter above the 49th parallel, can utilize these air masses in the spring to move north from Mexico and the United States (southern or Pacific northwest). Data acquired from Environment Canada is compiled by Olfert et al. (AAFC-Saskatoon) to track and model high altitude air masses in the spring with respect to potential introductions of insect pests onto the Canadian prairies. Each week, backward and forward trajectories are examined with respect to source and destination in the following manner. The forward trajectories are prognostic (5 days into the future) based on forecast wind fields while the backward trajectories are diagnostic and based on analyzed wind fields (5 days previous).
THE WEEK OF APRIL 7-11, 2016:  Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse Trajectories track arriving air masses back to their point of origin while Forward Trajectories predict favourable winds expected to arrive across the Canadian Prairies for the week of April 7-11, 2016:

Again, this week there are three forward trajectories from southern USA and Mexico that are predicted to cross the prairies over the next few days.

Reverse trajectories (RT)
None to report this week.
Forward Trajectories (FT)
This week there are again three forward trajectories from southern USA and Mexico that are predicted to cross Alberta, Saskatchewan, and Manitoba over the next few days.  Those involved with Diamondback moth pheromone trap monitoring will want to consider deploying their traps.

Weather forecasts (7 day)
Winnipeg: https://weather.gc.ca/city/pages/mb-38_metric_e.html
Brandon: https://weather.gc.ca/city/pages/mb-52_metric_e.html
Saskatoon: https://weather.gc.ca/city/pages/sk-40_metric_e.html
Regina: https://weather.gc.ca/city/pages/sk-32_metric_e.html
Edmonton: https://weather.gc.ca/city/pages/ab-50_metric_e.html
Lethbridge: https://weather.gc.ca/city/pages/ab-30_metric_e.html
Grande Prairie: https://weather.gc.ca/city/pages/ab-31_metric_e.html

Wind trajectories

Wind trajectories Related to Diamondback Moth (DBM) and
Aster Leafhopper Introductions
BACKGROUND: 
Potential wind events capable of carrying insect pests from source areas
in the USA can be identified by following trajectories for air parcels through
time. High altitude air masses, originating from southern locations, frequently
move northerly to Canadian destinations. Insect pest species such as
Diamondback moth and Aster leafhoppers, traditionally unable to overwinter
above the 49th parallel, can utilize these air masses in the spring to move
north from Mexico and the United States (southern or Pacific northwest). Data
acquired from Environment Canada is compiled by Olfert et al. (AAFC-Saskatoon)
to track and model high altitude air masses in the spring with respect to
potential introductions of insect pests onto the Canadian prairies. Each week,
backward and forward trajectories are examined with respect to source and
destination in the following manner. The forward trajectories are prognostic (5
days into the future) based on forecast wind fields while the backward
trajectories are diagnostic and based on analyzed wind fields (5 days
previous).
THE WEEK OF APRIL 1-7, 2016:  Wind trajectory data processing by
AAFC-Saskatoon Staff began in April. 
Reverse Trajectories track arriving air masses back to their point of
origin while Forward Trajectories predict favourable winds expected to arrive
across the Canadian Prairies for the week of April 1-7, 2016:
Reverse trajectories (RT)
None to report this week.
Forward Trajectories (FT)
Trajectories crossing over California and Mexico are
projected to cross Alberta, Saskatchewan and Manitoba this week.  Those involved with Diamondback moth pheromone trap monitoring will want to consider deploying their traps.

2016 Risk and Forecast Maps for the Prairies

The most recent insect pest maps of the 2016 forecast maps can be viewed and downloaded here.

Weekly Update

Prairie Pest Monitoring Network Weekly Updates – August 12, 2015


Otani, Giffen, Svendsen, Olfert


  1. Greetings!  An HTML and PDF version of this Weekly Update can be accessed here.  


  1. Weather synopsis – The following weather maps were retrieved from AAFC’s Drought Watch website.  The map below shows the Highest Temperatures the Past 7 Days (July 29-August 10, 2015) across the prairies:

The map below shows the Accumulated Precipitation the past 7 days (i.e., July 29-August 10, 2015):
While the map below reflects the Accumulated Precipitation for the Growing Season (i.e., April 1-August 10, 2015):
The map below reflects the Percent of Normal Precipitation for the Growing Season (i.e., April 1-August 10, 2015) for comparison:
The updated growing degree day (GDD) (Base 5ºC, March 1 – August 9, 2015) map is below:

While the growing degree day (GDD) (Base 10ºC, March 1 – August 9, 2015) map is included below:

  1. Pre-Harvest Interval (PHI) – Growers is late-season insect pest problems will need to remember to factor in the PHI which is the minimum number of days between a pesticide application and swathing or straight combining of a crop.  The PHI recommends sufficient time for a pesticide to break down and a PHI-value is both crop- and pesticide-specific.  Adhering to the PHI is important for a number of health-related reasons but also because Canada’s export customers of canola strictly regulate and test for the presence of trace residues of pesticides.
In 2013, the Canola Council of Canada created and circulated their “Spray to Swath Interval Calculator” which was intended to help canola growers accurately estimate their PHI.  Other PHI are described in your provincial crop protection guides and remember that specific crop x pesticide combinations will mean different PHIs.  A screen shot of the webpage is included below for your reference.
  1. Bertha armyworm (Mamestra configurata) –     In-field monitoring will focus on searching for Bertha armyworm larvae which will feed on leaves but also upon newly developing pods.  Take care to examine the whole plant when scouting.  Watch for the following life stages:
Reminder:  Some bertha armyworm larvae remain green or pale brown throughout their larval life. Large larvae may drop off the plants and curl up when disturbed, a defensive behavior typical of cutworms and armyworms. Young larvae chew irregular holes in leaves, but normally cause little damage. The fifth and sixth instars cause the most damage by defoliation and seed pod consumption. Crop losses due to pod feeding will be most severe if there are few leaves. Larvae eat the outer green layer of the stems and pods exposing the white tissue. At maturity, in late summer or early fall, larvae burrow into the ground and form pupae.
Monitoring:
Sample at least three locations (a minimum of 50 m apart) within a field for larvae.  At each location, mark an area of 1 m2 and beat the plants growing within that area to dislodge the larvae. Count them and compare the average against the values in the economic threshold table below:  
Table 1.  Economic thresholds for Bertha armyworm in canola (courtesy Manitoba Agriculture, Food and Rural Initiatives).
Expected Seed Value – $ / bushel*
Spraying cost –
$ / acre
6
7
8
9
10
11
12
13
14
15
16
Number of Larvae / metre2 *
7
20
17
15
13
12
11
10
9
9
8
8
8
23
20
17
15
14
13
11
11
10
9
9
9
26
22
19
17
16
14
13
12
11
10
10
10
29
25
22
19
17
16
14
13
12
11
11
11
32
27
24
21
19
17
16
15
14
13
12
12
34
30
26
23
21
19
17
16
15
14
13
13
37
32
28
25
22
20
19
17
16
15
14
14
40
35
31
27
24
22
20
19
17
16
15
15
43
37
32
29
26
23
22
20
19
17
16
* Economic thresholds for bertha armyworm are based on an assumed yield loss of 0.058 bu/acre for each larva/metre2 (Bracken and Bucher. 1977. Journal of Economic Entomology. 70: 701-705).
  1. Diamondback Moth (Plutella xylostella) – In-field monitoring for DBM larvae should continue this week.
Larval Monitoring:
Once the diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Remove the plants in an area measuring 0.1 m2 (about 12″ square), beat them on to a clean surface and count the number of larvae dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.  
Remember, parasitoid wasps attacking DBM larvae (Refer to photo below) are already present in fields.  Use the economic thresholds to preserve these beneficial wasps by NOT applying insecticide until DBM larval densities exceed the threshold.
Diamondback larva (upper left) and pupal silk cocoon (upper right), Diadegma insulare adult and early instar Diamondback moth larvae on canola leaf (lower left) and D. insulare pupae (N=2) within Diamondback moth pupal silk cocoons (lower right).
Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1 m2 (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m2 (approximately 1-2 larvae per plant).
  1. Swede midge (Contarinia nasturtii) – Thank you to Dr. Lars Andreassen who provided the following update for swede midge monitoring in Saskatchewan for 2015.  Very low swede midge numbers have been intercepted at pheromone trap monitoring sites across the prairies but these results are not surprising given the drought conditions.  In-field surveying performed by Andreassen et al. (AAFC-Saskatoon) are mapped below for 2015.  Their findings show consistent swede midge populations (larvae and damage symptoms) in northeast Saskatchewan in 2015.  Note there are new records of larvae and swede midge damage at sites surrounding Lloydminster up against the Alberta border in 2015.
Reminder – Swede midge scouting tips for in-field monitoring:
  • Watch for unusual plant structures and plant discolourations then follow-up by closely scrutinizing the plant for larvae (Refer to Figure below for larvae among the anthers).
  • The growing tip may become distorted and produce several growing tips or none at all, young leaves may become swollen, crinkled or crumpled and brown scarring caused by larval feeding may be seen on the leaf petioles and stems.
  • Flowers may fail to open.
  • Young plants that show unusual growth habits should be examined carefully for damage and larvae, especially if the sticky liners have many flies resembling midges (swede midges are about the size of orange blossom wheat midge but are not orange).
  • Larvae can be seen with a hand lens.
  • Refer to the latest Canola Watch for a swede midge update from Dr. Julie Soroka.

In 2014, Canola School posted a swede midge update entitled “ Swede midge a pest on the rise”, featuring Dr. Julie Soroka (AAFC-Saskatoon).  The Ontario Canola Growers post swede midge information here.  Dr. Rebecca Hallett has posted a very helpful swede midge identification guide for those performing in-field monitoring and pheromone trapping.  Finally, canola management recommendations for swede midge in Ontario are posted by Rebecca Hallett and Brian Hall.

  1. Cabbage seedpod weevil (Ceutorhynchus obstrictus) –  There is one generation of CSPW per year and the overwintering stage is the adult which is an ash-grey weevil measuring 3-4mm long (Refer to lower left photo).  Adults typically overwinter in soil beneath leaf litter within shelter belts and roadside ditches.  They emerge from overwintering in the spring as soil temperatures warm to ~15°C.  CSPW utilize several flowering hosts including wild mustard, flixweed, hoary cress, stinkweed and volunteer canola.  CSPW move to canola during the bud to early flower stages and will feed on pollen and buds, causing flowers to die.  Adult feeding damage to buds is more evident in dry years when canola is unable to compensate for bud loss.  Adults mate following a pollen meal then the female will deposit a single egg through the wall of a developing pod or adjacent to a developing seed within the pod (refer to lower right photo).  Eggs are oval and an opaque white, each measuring ~1mm long.  Typically a single egg is laid per pod although, when CSPW densities are high, two or more eggs may be laid per pod.
There are four larval instar stages of the CSPW and each stage is white and grub-like in appearance ranging up to 5-6mm in length (refer to lower left photo).  The first instar larva feeds on the cuticle on the outside of the pod while the second instar larva bores into the pod, feeding on the developing seeds.  A single larva consumes about 5 canola seeds.  The mature larva chews a small, circular exit hole from which it drops to the soil surface and pupation takes place in the soil within an earthen cell.  Approximately 10 days later, the new adult emerges to feed on maturing canola pods.  Later in the season these new adults migrate to overwintering sites beyond the field.  

Monitoring:  Begin sampling when the crop first enters the bud stage and continue through the flowering. Sweep net samples should be taken at ten locations within the field with ten 180° sweeps per location. Count the number of weevils at each location. Samples should be taken in the field perimeter as well as throughout the field.  Adults will invade fields from the margins and if infestations are high in the borders, application of an insecticide to the field margins may be effective in reducing the population to levels below which economic injury will occur.  An insecticide application is recommended when three to four weevils per sweep are collected and has been shown to be the most effective when canola is in the 10 to 20% bloom stage (2-4 days after flowering starts). Consider making insecticide applications late in the day to reduce the impact on pollinators.  Whenever possible, provide advanced warning of intended insecticide applications to commercial beekeepers operating in the vicinity to help protect foraging pollinators.  High numbers of adults in the fall may indicate the potential for economic infestations the following spring. 

Please find additional detailed information for CSPW in fact sheets posted by Alberta Agriculture and Forestry, Saskatchewan Agriculture, or the Prairie Pest Monitoring Network.

  1. Lygus bugs (Lygus spp.) – The economic threshold for Lygus in canola is applied at late flower and early pod stages.  Biological and monitoring information can be linked by clicking here or you can access Manitoban, or Albertan fact sheets or the Prairie Pest Monitoring Network’s monitoring protocol.  
Adult Lygus Bug
Adult L. lineolaris (5-6 mm long) (photo: AAFC-Saskatoon).
Lygus Bug Nymph
Fifth instar lygus bug nymph (3-4 mm long) (photo:  AAFC-Saskatoon).
Damage: Lygus bugs have piercing-sucking mouthparts and physically damage the plant by puncturing the tissue and sucking plant juices. The plants also react to the toxic saliva that the insects inject when they feed. Lygus bug infestations can cause alfalfa to have short stem internodes, excessive branching, and small, distorted leaves. They feed on buds and blossoms and cause them to drop. They also puncture seed pods and feed on the developing seeds causing them to turn brown and shrivel.
Begin monitoring canola when it bolts and continue until seeds within the pods are firm. Since adults can move into canola from alfalfa, check lygus bug numbers in canola when nearby alfalfa crops are cut.
Sample the crop for lygus bugs on a sunny day when the temperature is above 20°C and the crop canopy is dry. With a standard insect net (38 cm diameter), take ten 180° sweeps. Count the number of lygus bugs in the net.
Repeat the sampling in another 14 locations. Samples can be taken along or near the field margins. Calculate the cumulative total number of lygus bugs and then consult the sequential sampling chart (Figure C). If the total number is below the lower threshold line, no treatment is needed. If the total is below the upper threshold line, take more samples. If the total is on or above the upper threshold line, calculate the average number of lygus bugs per 10-sweep sample and consult the economic threshold table.
Sequential Sampling for Lygus Bug at Late Flowering Stage
Sequential sampling for lygus bugs at late flowering stage in canola.
The economic threshold for lygus bugs in canola covers the end of the flowering (Table 1) and the early pod ripening stages (Table 2). Once the seeds have ripened to yellow or brown, the cost of controlling lygus bugs may exceed the damage they will cause prior to harvest, so insecticide application is not warranted.
Table 1.  Economic thresholds for lygus bugs in canola at late flowering and early pod stages (Wise and Lamb 1998).
1 Canola crop stage estimated using Harper and Berkenkamp 1975).
2 Economic thresholds are based on an assumed loss of 0.1235 bu/ac per lygus bug caught in 10 sweeps (Wise and Lamb. 1998. The Canadian Entomologist. 130: 825-836).
Table 2.  Economic thresholds for lygus bugs in canola at early pod stage (Wise and Lamb 1998).
3 Economic thresholds are based on an assumed loss of 0.0882 bu/ac per lygus bug caught in 10 sweeps (Wise and Lamb. 1998. The Canadian Entomologist. 130: 825-836).
  1. Time of Swathing – The Canola Council of Canada created a guide to help growers estimate swathing time in canola.  A screen shot of the downloadable guide has been included below for reference.
  1. Harvest Sample Program – The Canadian Grain Commission is ready and willing to grade grain samples harvested in 2015.  This is a FREE opportunity for growers to gain unofficial insight into the quality of their grain and to obtain valuable dockage information and details associated with damage or quality issues.  More information on the Harvest Sample Program is available at the Canadian Grain Commission’s website or growers can register online to receive a kit to submit their grain.  The following screen shot of the CGC webpage offers more details.
  1. Provincial Insect Pest Updates – The following provincial websites have their pest updates posted so click the links to access their reports:
●  Manitoba’s Insect and Disease Report  (August 4, 2015) featuring lygus bugs and a reminder for the Fall grasshopper monitoring plus how it supports the 2016 grasshopper forecast map.
●  Saskatchewan’s Insect Update (July 23, 2015) featuring descriptions of causes of white heads in wheat.
●  Alberta’s Insect Update (Call of the Land audio report of August 6, 2015) featuring lygus bugs, aphids in cereals and diamondback moths.
  1. Insect of the Week – Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide (2015) by Hugh Philip is a new publication from Agriculture and Agri-Food CanadaThis growing season we will post an “Insect of the Week” in the form of short excerpts from the field guide. This week features the Beet webworm.
  1. Crop Reports –  The following provincial websites now have their Crop Reports posted so click the links to find their weekly updates:
  1. West Nile Virus Risk –  The regions most advanced in degree-day accumulations for Culex tarsalis, the vector for West Nile Virus, are shown in the map below.  Areas highlighted in red on the map below will have accumulated sufficient heat for C. tarsalis to fly.
The Public Health Agency of Canada posts information related to West Nile Virus in Canada and their website is located here.  The Canadian Wildlife Health Cooperative compiles and posts information related to their disease surveillance.  As of this week, nine birds in Ontario and five birds in Quebec tested positive for West Nile-related deaths (click here to view the report).
As of August 9, 2015, adult C. tarsalis are predicted to be in flight throughout much of the prairies – apply DEET if you are active outdoors within areas highlighted red, rose or pink in the map below!!  Areas highlighted orange should be prepared with DEET!
  1. Questions or problems accessing the contents of this Weekly Update?  Please e-mail either Dr. Owen Olfert or Jennifer Otani.  Past and present “Weekly Updates” are very kindly posted to the Western Forum website by webmaster, Dr. Kelly Turkington.  Please click here to link to that webpage.
  1. Previous topics:
    1. The PPMN Blog is located at http://prairiepestmonitoring.blogspot.ca/    Subscribe to receive the most current information OR bookmark the site to visit later.
    2. Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide – The NEW Field Guide to Support Integrated Pest Management (IPM) in Field and Forage Crops is NOW available for download from www.publications.gc.ca.   Two downloadable (~8 MB) versions of the complete field guide are available as either a  ‘Regular’ (i.e., best for printing: EnglishFrench) or ‘Enhanced’ (i.e., best for viewing electronically with active internal and external hyperlinks: English-enhancedFrench-enhanced).
    3. Wind trajectories Related to Diamondback Moth (DBM) and Aster Leafhopper Introductions – Completed for the season.  Please refer to earlier Weekly Updates for details related to backward and forward trajectories associated with air parcels moving over western Canadian locations.
    4. Flea Beetles (Chrysomelidae: Phyllotreta species) – Helpful images produced by Dr. Julie Soroka (AAFC-Saskatoon) exemplifying percent of cotyledon leaf area consumed by flea beetles are posted at Canola Watch.  
    5. Cutworms (Noctuidae) – Cutworm biology, species information, plus monitoring recommendations are available at the Prairie Pest Monitoring Network’s Cutworm Monitoring Protocol.  Also refer to these cutworm-specific fact sheets (Manitoba Agriculture and Rural Initiatives, Alberta Agriculture and Forestry).
    6. Pea Leaf Weevil (Sitona lineatus) –Link here for the Pea leaf weevil monitoring protocol which includes photos of related weevils.
    7. Crop Protection Guides – Access Saskatchewan’s Crop Production Guide,  Manitoba’s Guide to Crop Production,  Alberta’s Crop Protection or Blue Book,  or the Western Committee on Crop Pests Guidelines for the Control of Crop Pests.
    8. Canola Insect Scouting Chart – The Canola Insect Scouting Chart has been updated with hyperlinks now directing growers to downloadable pages from the NEW Field Guide!
    9. Alfalfa Weevil (Hypera postica) – Alfalfa growers are encouraged to check the Alfalfa Weevil Fact Sheet prepared by Dr. Julie Soroka (AAFC-Saskatoon).
    10. Cabbage root maggot (Delia spp.) – A summary of root maggot biology, research, and pest management recommendations for canola production was published by Soroka and Dosdall (2011).  Remember there are no registered insecticides for root maggot control in canola.
    11. Wheat midge (Sitodiplosis mosellana) –  – Additional wheat midge biology and monitoring information can be located by clicking here or by linking to provincial fact sheets (Saskatchewan Agriculture or Alberta Agriculture and Forestry).  More information related to wheat midge on the Canadian prairies was published by Elliott, Olfert, and Hartley in 2011.  
    12. Cereal Leaf Beetles (Oulema melanopus) – Reminder – Fact sheets for Cereal leaf beetle (CLB) are posted by Alberta Agriculture and Forestry, and BC Ministry of Agriculture, and the Prairie Pest Monitoring Network.  
    13. Grasshoppers (Camnulla pellucida, Melanoplus sanguinipes, M. bivittattus, M. packardii) –
Remember only five or six grasshopper species of the 80+ that occur on the prairies are regarded as crop pests.  Economic thresholds for grasshoppers are posted by Manitoba Agriculture, Saskatchewan Agriculture, Alberta Agriculture and Forestry, BC Ministry of Agriculture, and the Prairie Pest Monitoring Network.
    1. Bertha armyworm (Mamestra configurata) – Provincial fact sheets describing the biology and related pest management information for bertha armyworm are posted by Manitoba Agriculture, Food and Rural Development, Saskatchewan Agriculture, Alberta Agriculture and Forestry, or BC Ministry of Agriculture.

Weekly Update

Prairie Pest Monitoring Network Weekly Updates – July 15, 2015
Otani, Giffen, Svendsen, Olfert


  1. Greetings!  This week grasshoppers, cabbage seedpod weevil and wheat midge were important pests based on provincial reports and reminders for in-field scouting.  Rain fell in some areas of the prairies but many continue to wait for moisture.  Remember, a downloadable version of this Weekly Update can be accessed here.  


  1. Weather synopsis – Thanks to the folks who compile and manage the agroclimate maps posted by AAFC!  The map below shows the Accumulated Precipitation the past 7 days (i.e., July 7-13, 2015):


While the map below reflects the Accumulated Precipitation for the Growing Season (i.e., April 1-July 13, 2015):


The map below reflects the Percent of Normal Precipitation for the Growing Season (i.e., April 1-July 13, 2015) for comparison:

The map below shows the Lowest Temperatures the Past 7 Days (July 7-13, 2015) across the prairies:


While the map below shows the Highest Temperatures the Past 7 Days (July 7-13, 2015) across the prairies:
The updated growing degree day (GDD) (Base 5ºC, March 1 – July 12, 2015) map is below:


While the growing degree day (GDD) (Base 10ºC, March 1 – July 12, 2015) map is included below:




  1. Bertha armyworm (Mamestra configurata) – Low cumulative counts of BAW moths were again reported in pheromone traps throughout the prairies this week.


In-field monitoring for egg masses (Refer to photo below) and newly emerged larvae (photo below) should initially focus on the undersides of leaves plus watch the margins of leaves for feeding.  Bertha armyworm larvae will also feed on newly developing pods so the whole plant should be examined.  Watch for the following life stages:



Reminder:  Some bertha armyworm larvae remain green or pale brown throughout their larval life. Large larvae may drop off the plants and curl up when disturbed, a defensive behavior typical of cutworms and armyworms. Young larvae chew irregular holes in leaves, but normally cause little damage. The fifth and sixth instars cause the most damage by defoliation and seed pod consumption. Crop losses due to pod feeding will be most severe if there are few leaves. Larvae eat the outer green layer of the stems and pods exposing the white tissue. At maturity, in late summer or early fall, larvae burrow into the ground and form pupae.


Monitoring:
Larval sampling should commence once the adult moths are noted. Sample at least three locations, a minimum of 50 m apart. At each location, mark an area of 1 m2 and beat the plants growing within that area to dislodge the larvae. Count them and compare the average against the values in the economic threshold table below:  


Table 1.  Economic thresholds for Bertha armyworm in canola (courtesy Manitoba Agriculture, Food and Rural Initiatives).
Expected Seed Value – $ / bushel*
Spraying cost –
$ / acre
6
7
8
9
10
11
12
13
14
15
16
Number of Larvae / metre2 *
7
20
17
15
13
12
11
10
9
9
8
8
8
23
20
17
15
14
13
11
11
10
9
9
9
26
22
19
17
16
14
13
12
11
10
10
10
29
25
22
19
17
16
14
13
12
11
11
11
32
27
24
21
19
17
16
15
14
13
12
12
34
30
26
23
21
19
17
16
15
14
13
13
37
32
28
25
22
20
19
17
16
15
14
14
40
35
31
27
24
22
20
19
17
16
15
15
43
37
32
29
26
23
22
20
19
17
16
* Economic thresholds for bertha armyworm are based on an assumed yield loss of 0.058 bu/acre for each larva/metre2 (Bracken and Bucher. 1977. Journal of Economic Entomology. 70: 701-705).


  1. Grasshoppers (Camnulla pellucida, Melanoplus sanguinipes, M. bivittattus, M. packardii) – In-field scouting along field margins and in ditches AND within the field is critical now with the exceedingly dry growing conditions!  


Scouting – Remember only five or six grasshopper species of the 80+ that occur on the prairies are regarded as crop pests.  The lifecycles of these six economically important species are similar.  Nymphs hatch from overwintered eggs in the spring.  Nymphs develop through five stages or instars before becoming adults.  Typically, the most serious economic damage will occur from the third to fifth instar stages but all stages need to be monitored.  The life stages of the clearwinged grasshopper (Camnulla pellucida) are shown below.  Note that adults possess fully formed wings that extend the entire length of the abdomen.


Life stages of the clearwinged grasshopper include (left to right) eggs which overwinter, first instar nymphs that hatch in the spring followed by second, third, fourth and fifth instar nymphs which finally develop into the adult stage.


Need help distinguishing grasshopper nymph stages?  Saskatchewan Agriculture’s latest Insect Update includes line drawings to help!  It also includes a summary of economic thresholds for grasshoppers in various crops.


Economic thresholds for grasshoppers are posted by Manitoba Agriculture, Saskatchewan Agriculture, Alberta Agriculture and Forestry, BC Ministry of Agriculture, and the Prairie Pest Monitoring Network.


  1. Diamondback Moth (Plutella xylostella) – In-field monitoring for DBM larvae should continue this week.


Larval Monitoring:
Once the diamondback moth is present in the area, it is important to monitor individual canola fields for larvae.  Remove the plants in an area measuring 0.1 m2 (about 12″ square), beat them on to a clean surface and count the number of larvae dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.  
Remember, parasitoid wasps attacking DBM larvae (Refer to photo below) are already present in fields.  Use the economic thresholds to preserve these beneficial wasps by NOT applying insecticide until DBM larval densities exceed the threshold.


Diamondback larva (upper left) and pupal silk cocoon (upper right), Diadegma insulare adult and early instar Diamondback moth larvae on canola leaf (lower left) and D. insulare pupae (N=2) within Diamondback moth pupal silk cocoons (lower right).



Economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1 m2 (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m2 (approximately 1-2 larvae per plant).


Please also refer to fact sheets for DBM posted by Manitoba Agriculture, Food and Rural Development, Saskatchewan Agriculture, Alberta Agriculture and Forestry, and the Prairie Pest Monitoring Network.  


  1. Wheat Midge (Sitodiplosis mosellana) – This season, predictive modelling was used in an attempt to forecast wheat midge emergence.  In 2014, the degree-day model proposed by German researchers (Basedow) was used to predict adult midge emergence in the Peace River region compared to the 5°C base temperature model which corresponds well to midge emergence throughout central and southern areas of the prairies.  The map below predicts the geographic distribution and corresponding accumulation of heat units necessary for wheat midge to emerge from puparia developing in the soil.  


The map below indicates the predicted status of wheat midge emergence with 10% of resident midge population emerged in areas highlighted yellow (600-693 DD), 50% in areas highlighted gold (693-784 DD), and 90% of resident midge emerged in areas highlighted orange (784-874 DD) using current weather data (up to July 12, 2015).  Wheat midge emergence is predicted to be 100% completed (as of July 12, 2015) with the initial midge larvae now expected to be found within wheat heads growing in southern Alberta, southeast Saskatchewan, southwest Manitoba and to the south of Winnipeg.  Wheat midge emergence is predicted to be 90% completed (as of July 12, 2015) throughout most of the boreal region of the prairies and in the north Peace.  Wheat midge emergence is predicted to be 50% completed (as of July 12, 2015) throughout the remaining portions of the prairies.  



When monitoring wheat fields, pay attention to the synchrony between flying midge and anthesis.  Additional wheat midge biology and monitoring information can be located by clicking here or linking to your provincial fact sheet (Saskatchewan Agriculture or Alberta Agriculture and Forestry).  More information related to wheat midge on the Canadian prairies was published by Elliott, Olfert, and Hartley in 2011.  


REMEMBER that in-field counts of wheat midge per head remain the basis of economic threshold decision.  Also remember that the parasitoid, Macroglenes penetrans (shown below), is actively searching for wheat midge at the same time.  Preserve this parasitoid whenever possible and remember your insecticide control options for wheat midge also kill these beneficial insects which help reduce midge populations.



In-field monitoring for wheat midge should be carried out in the evening (preferably after 8:30 pm or later) when the female midges are most active. On warm (at least 15ºC), calm evenings, the midge can be observed in the field, laying their eggs on the wheat heads. Midge populations can be estimated by counting the number of adults present on 4 or 5 wheat heads. Inspect the field daily in at least 3 or 4 locations during the evening.


Economic Thresholds for Wheat Midge:
  1. To maintain optimum grade: 1 adult midge per 8 to 10 wheat heads during the susceptible stage.
  2. For yield only: 1 adult midge per 4 to 5 heads. At this level of infestation, wheat yields will be reduced by approximately 15% if the midge is not controlled.
     
Inspect the developing kernels for the presence of larvae and the larval damage.


NEW – Wheat growers in Alberta can now access mapped cumulative counts from wheat midge pheromone traps.


  1. Cereal Leaf Beetles (Oulema melanopus) – Reminder – Fact sheets for Cereal leaf beetle (CLB) are posted by Alberta Agriculture and Forestry, and BC Ministry of Agriculture, and the Prairie Pest Monitoring Network.  Descriptions of the various CLB stages and some monitoring tips are included below.  
Lifecycle and Damage:
Adult: Adult cereal leaf beetles (CLB) have shiny bluish-black wing-covers (Refer to figure below). The thorax and legs are light orange-brown. Females (4.9 to 5.5 mm) are slightly larger than the males (4.4 to 5 mm). Adult beetles overwinter in and along the margins of grain fields in protected places such as in straw stubble, under crop and leaf litter, and in the crevices of tree bark. They favour sites adjacent to shelterbelts, deciduous and conifer forests. They emerge in the spring once temperature reaches 10-5ºC and are active for about 6 weeks. They usually begin feeding on grasses, then move into winter cereals and later into spring cereals. 


Egg: Eggs are laid approximately 14 days following the emergence of the adults. Eggs are laid singly or in pairs along the mid vein on the upper side of the leaf and are cylindrical, measuring 0.9 mm by 0.4 mm, and yellowish in colour. Eggs darken to black just before hatching. 


Larva: The larvae hatch in about 5 days and feed for about 3 weeks, passing through 4 growth stages (instars). The head and legs are brownish-black; the body is yellowish. Larvae are usually covered with a secretion of mucus and fecal material, giving them a shiny black, wet appearance (Refer to figure below).  When the larva completes its growth, it drops to the ground and pupates in the soil.


Pupa: Pupal colour varies from a bright yellow when it is first formed, to the colour of the adult just before emergence. The pupal stage lasts 2 – 3 weeks. Adult beetles emerge and feed for a couple of weeks before seeking overwintering sites. There is one generation per year.


Cereal leaf beetle adult (left) and larva (right).


Leaf damage resulting from feeding by cereal leaf beetle larvae.


Monitoring:
Give priority to following factors when selecting monitoring sites:
□  Choose fields and sections of the fields with past or present damage symptoms.
□  Choose fields that are well irrigated (leaves are dark green in color), including young, lush crops.  Areas of a field under stress and not as lush (yellow) are less likely to support CLB.
□  Monitor fields located along riparian corridors, roads and railroads.
□  Survey field areas situated near brush cover or weeds, easy to access, or are nearby sheltered areas such as hedge rows, forest edges, fence lines, etc.
Focus your site selection on the following host plant priorities:
●  First – winter wheat. If no winter wheat is present then;
●  Second – other cereal crops (barley, wheat, oats, and rye). If no cereal crops are present then;
●  Third – hay crops. If no hay crops or cereal crops are present then;
●  Fourth – ditches and water corridors


Sweep-net Sampling for Adults and Larvae:
A sweep is defined as a one pass (from left to right, executing a full 180 degrees) through the upper foliage of the crop using a 37.5 cm diameter sweep-net. A sample is defined as 100 sweeps taken at a moderate walking pace collected 4-5 meters inside the border of a field.  At each site, four samples should be collected, totaling 400 sweeps per site.  The contents of each sample should be visually inspected for life stages of CLB and all suspect specimens should be retained for identification.  Please note that, because the CLB larvae are covered in a sticky secretion, when they are caught in a sweep-net they are often covered in debris and are very difficult to see. To help determine the presence of CLB, place the contents of the sweep net into a large plastic bag for observation.


Visual Inspection:
Both the adults and larvae severely damage plants by chewing out long strips of tissue between the veins of leaves, leaving only a thin membrane. When damage is extensive, leaves turn whitish (Figure 14). The plant may be killed or the crop may be seriously reduced. In addition to feeding damage, inspectors should be looking for all life stages of the CLB. In a field of host material the visual survey should be conducted between “sweep samples”.  Other locations to be examined include grass covered ditch banks and young host crops that are too low to sweep. Experienced surveyors should spend 15 minutes on visual inspection. Less experience surveyors should spend an additional 10 minutes on the visual component.


  1. Swede midge (Contarinia nasturtii) – Reminder – This season we again include scouting tips for in-field monitoring:
□  Watch for unusual plant structures and plant discolourations then follow-up by closely scrutinizing the plant for larvae (Refer to Figure below).
□  The growing tip may become distorted and produce several growing tips or none at all, young leaves may become swollen, crinkled or crumpled and brown scarring caused by larval feeding may be seen on the leaf petioles and stems.
□  Flowers may fail to open.
□  Young plants that show unusual growth habits should be examined carefully for damage and larvae, especially if the sticky liners have many flies resembling midges (swede midges are about the size of orange blossom wheat midge but are not orange).
□  Larvae can be seen with a hand lens.



In 2014, Canola School posted a swede midge update entitled “ Swede midge a pest on the rise”, featuring Dr. Julie Soroka (AAFC-Saskatoon).  The Ontario Canola Growers post swede midge information here.  Dr. Rebecca Hallett has posted a very helpful swede midge identification guide for those performing in-field monitoring and pheromone trapping.  Finally, canola management recommendations for swede midge in Ontario are posted by Rebecca Hallett and Brian Hall.


  1. Cabbage seedpod weevil (Ceutorhynchus obstrictus) –  There is one generation of CSPW per year and the overwintering stage is the adult which is an ash-grey weevil measuring 3-4mm long (Refer to lower left photo).  Adults typically overwinter in soil beneath leaf litter within shelter belts and roadside ditches.  They emerge from overwintering in the spring as soil temperatures warm to ~15°C.  CSPW utilize several flowering hosts including wild mustard, flixweed, hoary cress, stinkweed and volunteer canola.  CSPW move to canola during the bud to early flower stages and will feed on pollen and buds, causing flowers to die.  Adult feeding damage to buds is more evident in dry years when canola is unable to compensate for bud loss.  Adults mate following a pollen meal then the female will deposit a single egg through the wall of a developing pod or adjacent to a developing seed within the pod (refer to lower right photo).  Eggs are oval and an opaque white, each measuring ~1mm long.  Typically a single egg is laid per pod although, when CSPW densities are high, two or more eggs may be laid per pod.



There are four larval instar stages of the CSPW and each stage is white and grub-like in appearance ranging up to 5-6mm in length (refer to lower left photo).  The first instar larva feeds on the cuticle on the outside of the pod while the second instar larva bores into the pod, feeding on the developing seeds.  A single larva consumes about 5 canola seeds.  The mature larva chews a small, circular exit hole from which it drops to the soil surface and pupation takes place in the soil within an earthen cell.  Approximately 10 days later, the new adult emerges to feed on maturing canola pods.  Later in the season these new adults migrate to overwintering sites beyond the field.  


Monitoring:  Begin sampling when the crop first enters the bud stage and continue through the flowering. Sweep net samples should be taken at ten locations within the field with ten 180° sweeps per location. Count the number of weevils at each location. Samples should be taken in the field perimeter as well as throughout the field.  Adults will invade fields from the margins and if infestations are high in the borders, application of an insecticide to the field margins may be effective in reducing the population to levels below which economic injury will occur.  An insecticide application is recommended when three to four weevils per sweep are collected and has been shown to be the most effective when canola is in the 10 to 20% bloom stage (2-4 days after flowering starts). Consider making insecticide applications late in the day to reduce the impact on pollinators.  Whenever possible, provide advanced warning of intended insecticide applications to commercial beekeepers operating in the vicinity to help protect foraging pollinators.  High numbers of adults in the fall may indicate the potential for economic infestations the following spring. 


Please find additional detailed information for CSPW in fact sheets posted by Alberta Agriculture and Forestry, Saskatchewan Agriculture, or the Prairie Pest Monitoring Network.




  1. Cabbage root maggot (Delia spp.) – Among root feeding pests of canola, historically five species of Delia flies have been identified across the Canadian prairies;  Delia radicum (L.), D. floralis (Fallén), D. platura (Meigan), D. planipalpis (Stein), and D. florilega (Zett.) have been observed in canola over 30 years of research (Liu and Butts 1982, Griffiths 1986a, Broatch and Vernon 1997; Soroka and Dosdall 2011).  A summary of root maggot biology, research, and pest management recommendations for canola production was published by Soroka and Dosdall (2011).  



Root maggots continue to be a problematic in canola production largely owing to the fact that (i) the species is composition varies by geographic latitude and local conditions, plus (ii) one or two generations per year will occur but varies by species.  The species complex is typically characterized by multiple, overlapping generations of Delia resulting in adults laying eggs in canola (Refer to upper left photo for adult and eggs) from late Spring to October and maggots feeding on roots from late rosette until late fall (Refer to upper right photo).  Root maggots pupate and overwinter within cigar-shaped, reddish-brown puparia 5-20 cm below the soil surface (Soroka and Dosdall 2011) so canola-on-canola rotations should be avoided.  In the spring, adults emerge from mid-May to mate and females lay oval, white eggs singly or in batches near the base of cruciferous host plants over a 5-6 week period.  The larvae develop through three instar stages which feed on root hairs then secondary roots initially whereas older maggots will feed into the taproot of a canola plant.  


Remember there is no registered insecticide for root maggot control in canola.




  1. Lygus bugs (Lygus spp.) – The economic threshold for Lygus in canola is applied at late flower and early pod stages.  Biological and monitoring information can be linked by clicking here or you can access the Manitoba, or Alberta fact sheets or the Prairie Pest Monitoring Network’s monitoring protocol.  


Adult Lygus Bug
Adult L. lineolaris (5-6 mm long) (photo: AAFC-Saskatoon).


Lygus Bug Nymph
Fifth instar lygus bug nymph (3-4 mm long) (photo:  AAFC-Saskatoon).


Damage: Lygus bugs have piercing-sucking mouthparts and physically damage the plant by puncturing the tissue and sucking plant juices. The plants also react to the toxic saliva that the insects inject when they feed. Lygus bug infestations can cause alfalfa to have short stem internodes, excessive branching, and small, distorted leaves. They feed on buds and blossoms and cause them to drop. They also puncture seed pods and feed on the developing seeds causing them to turn brown and shrivel.
Begin monitoring canola when it bolts and continue until seeds within the pods are firm. Since adults can move into canola from alfalfa, check lygus bug numbers in canola when nearby alfalfa crops are cut.
Sample the crop for lygus bugs on a sunny day when the temperature is above 20°C and the crop canopy is dry. With a standard insect net (38 cm diameter), take ten 180° sweeps. Count the number of lygus bugs in the net.
Repeat the sampling in another 14 locations. Samples can be taken along or near the field margins. Calculate the cumulative total number of lygus bugs and then consult the sequential sampling chart (Figure C). If the total number is below the lower threshold line, no treatment is needed. If the total is below the upper threshold line, take more samples. If the total is on or above the upper threshold line, calculate the average number of lygus bugs per 10-sweep sample and consult the economic threshold table.
Sequential Sampling for Lygus Bug at Late Flowering Stage
Sequential sampling for lygus bugs at late flowering stage in canola.


The economic threshold for lygus bugs in canola covers the end of the flowering (Table 1) and the early pod ripening stages (Table 2). Once the seeds have ripened to yellow or brown, the cost of controlling lygus bugs may exceed the damage they will cause prior to harvest, so insecticide application is not warranted.
Consider the estimated cost of spraying and expected return prior to making a decision to treat a crop.  Remember that insecticide applications at bud stage in canola have not been proven to result in an economic benefit in production.  The exception to this is in the Peace River region where early, dry springs and unusually high densities of lygus bug adults can occasionally occur at bud stage.  In this situation, high numbers of lygus bugs feeding on moisture-stressed canola at bud stage is suspected to result in delay of flowering so producers in that region must monitor in fields that fail to flower as expected.
Table 1.  Economic thresholds for lygus bugs in canola at late flowering and early pod stages (Wise and Lamb 1998).


1 Canola crop stage estimated using Harper and Berkenkamp 1975).
2 Economic thresholds are based on an assumed loss of 0.1235 bu/ac per lygus bug caught in 10 sweeps (Wise and Lamb. 1998. The Canadian Entomologist. 130: 825-836).


Table 2.  Economic thresholds for lygus bugs in canola at pod stage (Wise and Lamb 1998).


3 Economic thresholds are based on an assumed loss of 0.0882 bu/ac per lygus bug caught in 10 sweeps (Wise and Lamb. 1998. The Canadian Entomologist. 130: 825-836).


  1. Provincial Insect Pest Updates – The following provincial websites have their pest updates posted so click the links to access their reports:
●  Manitoba’s Insect and Disease Report  (July 7, 2015)
●  Saskatchewan’s Insect Update (July 7, 2015)
●  Alberta’s Insect Update (Call of the Land audio report of July 16, 2015)


  1. Insect of the Week – Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide (2015) by Hugh Philip is a new publication from Agriculture and Agri-Food CanadaThis growing season we will post an “Insect of the Week” in the form of short excerpts from the field guide. This week features several species of aphids (i.e., corn leaf, English grain, green peach, oat-birdcherry, pea, potato, soybean, turnip, greenbug).



Additionally, ladybird beetles were also featured in the Insect of the Week.



  1. Crop Reports –  The following provincial websites now have their Crop Reports posted so click the links to find their weekly updates:




  1. West Nile Virus Risk – Reminder – Now is the time for DEET!  The regions most advanced in degree-day accumulations for Culex tarsalis, the vector for West Nile Virus, are shown in the map below.  Areas yet to be highlighted in red on the map below will have accumulated sufficient heat for C. tarsalis to fly. As of July 12, 2015, the predicted development of C. tarsalis is most advanced in the southern areas of our prairie provinces with adults predicted to emerge from 350-400 DD in the map below ( will be highlighted in red).


The Public Health Agency of Canada posts information related to West Nile Virus in Canada and their website is located here.  The Canadian Wildlife Health Cooperative compiles and posts information related to their disease surveillance.  As of this week, one bird in New Brunswick and one bird in Ontario tested positive for West Nile-related deaths (click here to view the report).





  1. Questions or problems accessing the contents of this Weekly Update?  Please e-mail or call either Owen.Olfert@agr.gc.ca (tel. 306-385-9355) or Jennifer.Otani@agr.gc.ca (tel. 780-354-5132).  Past and present “Weekly Updates” are very kindly posted to the Western Forum website by webmaster, Dr. Kelly Turkington.  Please click here to link to that webpage.
  1. Previous topics:
    1. The PPMN Blog is located at http://PrairiePestMonitoring.blogspot.ca   Subscribe to receive the most current information OR bookmark the site to visit later.
    2. Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide – The NEW Field Guide to Support Integrated Pest Management (IPM) in Field and Forage Crops is NOW available for download from www.publications.gc.ca.   Two downloadable (~8 MB) versions of the complete field guide are available as either a  ‘Regular’ (i.e., best for printing: EnglishFrench) or ‘Enhanced’ (i.e., best for viewing electronically with active internal and external hyperlinks: English-enhancedFrench-enhanced).
    3. Wind trajectories Related to Diamondback Moth (DBM) and Aster Leafhopper Introductions – Completed for the season.  Please refer to earlier Weekly Updates for details related to backward and forward trajectories associated with air parcels moving over western Canadian locations.
    4. Flea Beetles (Chrysomelidae: Phyllotreta species) – Helpful images produced by Dr. Julie Soroka (AAFC-Saskatoon) exemplifying percent of cotyledon leaf area consumed by flea beetles are posted at Canola Watch.  
    5. Cutworms (Noctuidae) – Cutworm biology, species information, plus monitoring recommendations are available at the Prairie Pest Monitoring Network’s Cutworm Monitoring Protocol.  Also refer to these cutworm-specific fact sheets (Manitoba Agriculture and Rural Initiatives, Alberta Agriculture, Food and Rural Development).  If cutworms are spotted in Albertan fields, please also consider using the Alberta Pest Surveillance Network’s “2015 Cutworm Reporting Tool” for online reporting located by clicking here.  Data entered at that website uploads to a live “Cutworm Map”.
    6. Pea Leaf Weevil (Sitona lineatus) –Link here for the Pea leaf weevil monitoring protocol which includes photos of related weevils.
    7. Crop Protection Guides – Access Saskatchewan’s Crop Production Guide,  Manitoba’s Guide to Crop Production,  Alberta’s Crop Protection or Blue Book,  or the Western Committee on Crop Pests Guidelines for the Control of Crop Pests.
    8. Canola Insect Scouting Chart – Reminder – The Canola Insect Scouting Chart has been updated with hyperlinks now directing growers to downloadable pages from the NEW Field Guide!
    9. Alfalfa Weevil (Hypera postica) – Alfalfa growers are encouraged to check the Alfalfa Weevil Fact Sheet prepared by Dr. Julie Soroka (AAFC-Saskatoon).

Wind Trajectories

Wind
trajectories Related to Diamondback Moth (DBM) and Aster Leafhopper
Introductions to the Canadian Prairies in 2015


BACKGROUND:
  Potential
wind events capable of carrying insect pests from source areas in the USA can
be identified by following trajectories for air parcels through time. 
High
altitude air masses, originating from southern locations, frequently move
northerly to Canadian destinations. Insect pest species such as Diamondback
moth and Aster leafhoppers, traditionally unable to overwinter above the 49th
parallel, can utilize these air masses in the spring to move north from Mexico
and the United States (southern or Pacific northwest).
Wind trajectory
data processing by AAFC-Saskatoon Staff (Weiss & Olfert) began in April.
 Reverse Trajectories track air masses arriving across the
prairies back to their point of origin.  Forward Trajectories predict favorable winds
expected to arrive across the Canadian Prairies.  
Updated: June 1,
2015
1.  Reverse
trajectories (RT)
Pacific Northwest (PNW) – Relative to the previous week,
there has been an increase in the number of
reverse trajectories that were predicted to cross the prairies over the
last few days (May 30 – 1; May 31 – 10; June 1 – 17).
2.  Forward
trajectories (FT)
 
For the last couple of
weeks the winds originating over southwest USA were generally tracking
eastward, to the Atlantic Ocean. Over the last few days, forward trajectories
are predicted to move north of 49oN before moving in an eastward
direction (e.g. Brownsville TX). Over the next few days these trajectories may
carry insects north to the prairies.
3.  Trajectory
summary for April 1-May 28, 2015
 
Based trajectory data from
April 1 – May 28, 2015, a greater number of trajectories were
predicted to arrive across the prairies originating from the Pacific northwest (Figure 1) compared to southwest USA
(Figure 2).

Figure 1
Figure 2

Wind Trajectories

Wind trajectories Related to Diamondback Moth (DBM) and Aster Leafhopper
Introductions to the Canadian Prairies in 2015

BACKGROUND:
  Potential wind events capable of carrying insect pests
from source areas in the USA can be identified by following trajectories for
air parcels through time. 
High altitude air masses, originating
from southern locations, frequently move northerly to Canadian destinations.
Insect pest species such as Diamondback moth and Aster leafhoppers,
traditionally unable to overwinter above the 49th parallel, can utilize these
air masses in the spring to move north from Mexico and the United States
(southern or Pacific northwest).
Wind trajectory data processing by AAFC-Saskatoon Staff (Weiss &
Olfert) began in April.  Reverse Trajectories track air
masses arriving across the prairies back to their point of origin.  Forward
Trajectories
 predict favorable winds expected to arrive
across the Canadian Prairies.  
Updated: May 23-25, 2015
1.  Reverse trajectories (RT)
This week, RTs are originating over the Arctic, tracking south to pass
over South and North Dakota and tracking north into the Canadian prairies.
2.  Forward trajectories (FT) 
This week, Environment Canada models project that FTs crossing the
prairies are expected to originate from the following sites:
Location
Projected
Arrival Dates
BOZEMAN_MONTANA
25/05/2015
EASTERN_WASHINGTON
25/05/2015
MOSCOW_IDAHO
25/05/2015
EASTERN_WASHINGTON
24/05/2015
MANHATTAN_KANSAS
24/05/2015
MOSCOW_IDAHO
24/05/2015
BROWNSVILLE_TEXAS
23/05/2015
EASTERN_WASHINGTON
23/05/2015
MOSCOW_IDAHO
23/05/2015

Insect of the Week – Diamondback moth

In follow-up to Scott Hartley’s observations, this week’s Insect of the Week highlights diamondback moth (from the new Field Crop and Forage Pests and their Natural Enemies in Western Canada – Identification and Management Field Guide). See also Insect of the Week from May 11 for flea beetle description, scouting and management options.

Saskatchewan Field Notes

Thanks to Scott Hartley for forwarding these quick observations….


Flea beetles:  On Thursday received a report of intense flea beetle
feeding on a young crop at cotyledon stage.  It was reported as striped
flea beetles in high numbers with plenty of stem girdling – very damaging for a
seedling crop.  They are considering re-seeding some of the (substantial)
acres affected. 



Diamondback moths (DBM):  So far, no
significant numbers of DBM picked up in pheromone traps reporting from Saskatchewan.


Wind Trajectories

Wind trajectories Related to
Diamondback Moth (DBM) and Aster Leafhopper Introductions to the Canadian
Prairies in 2015

BACKGROUND:
  Potential wind events
capable of carrying insect pests from source areas in the USA can be identified
by following trajectories for air parcels through time. 
High altitude air masses, originating from southern locations,
frequently move northerly to Canadian destinations. Insect pest species such as
Diamondback moth and Aster leafhoppers, traditionally unable to overwinter
above the 49th parallel, can utilize these air masses in the spring to move
north from Mexico and the United States (southern or Pacific northwest).
Wind trajectory data processing by
AAFC-Saskatoon Staff (Weiss & Olfert) began in April.  Reverse
Trajectories
 track air masses arriving across the prairies back to
their point of origin.  Forward Trajectories predict favorable winds expected to arrive across the Canadian Prairies.  
Updated: May 20, 2015
1. 
Reverse trajectories (RT)
During the early part of May, reverse
trajectories (RTs) were originating over the Arctic, but have recently shifted
southward.  This week a number of RTs, originating from California, Texas
and Mexico have passed over a number of prairie locations. The following table provides
an overview of were RTs originating across southwest USA and Mexico have
crossed the prairies.
Number
of Dates Reverse Trajectories Were Tracked to these Prairie Sites (between
May 13-20, 2015)
Location
Latitude
Longitude
Number
of Dates
BRANDON_MB
49.8
-99.9
3
SELKIRK_MB
50.1
-96.9
3
YORKTON_SK
51.2
-102.4
2
RUSSELL_MB
50.8
-101.3
2
CARMAN_MB
49.5
-98
2
GRENFELL_SK
50.4
-102.9
2
PORTAGE_MB
50
-98.3
2
LETHBRIDGE_AB
49.7
-112.8
1
KINDERSLEY_SK
51.5
-109.1
1
DAUPHIN_MB
51.1
-100
1
GAINSBOROUGH_SK
49.2
-101.4
1
PROVOST_AB
52.4
-110.3
1
2.  Forward trajectories (FT)
Environment Canada models indicate that
most of the forward trajectories crossing the prairies are expected to
originate over northwestern USA (Pacific).

Ongoing Monitoring Efforts for 2015

In 2014, the PPMN compiled data for the following sites highlighted in the map below.  The monitoring data collected from these sites forms invaluable sources of information both now and into the future.

Agricultural people from federal, provincial, regional and industry sectors all contribute to this tremendous effort!  Monitoring at sites like these below provides crucial information on insect pest risk before and during the growing season.  Some sites are visited annually while others are checked weekly and all that data enables the synthesis and generation of risk and forecast maps like those posted here.

THANK YOU to all who contribute!
Please contact Dr. Owen Olfert at AAFC-Saskatoon for more information about this map.

Wind Trajectories

   Wind trajectories Related to Diamondback Moth (DBM) and Aster Leafhopper Introductions to the Canadian
Prairies in 2015

BACKGROUND:
  Potential wind events capable of carrying insect
pests from source areas in the USA can be identified by following trajectories
for air parcels through time. 
High altitude air masses,
originating from southern locations, frequently move northerly to Canadian
destinations. Insect pest species such as Diamondback moth and Aster
leafhoppers, traditionally unable to overwinter above the 49th parallel, can
utilize these air masses in the spring to move north from Mexico and the United
States (southern or Pacific northwest). 

Wind trajectory data processing by AAFC-Saskatoon Staff began in April.  Reverse
Trajectories
 track air masses arriving across the prairies back to
their point of origin.  Forward Trajectories predict
favourable winds expected to arrive across the Canadian Prairies.  
    Updated: May 13, 2015
    1. Reverse trajectories (RT) – During April and early
May, reverse trajectories winds were originating over the Pacific Ocean and
tracking in a west to east direction across North America.  Since May 8th
most are now originating over the Arctic.
    a. Pacific Northwest (PNW) –
Nothing to report.
    b. Mexico and southwest USA (SW)
– Nothing to report.
    2. Forward trajectories (FT)
    There are
a number of forward trajectories from southern USA and Mexico predicted to
cross the prairies over the next five days. The Imperial Valley and Mexicali
FTs are predicted to cross southern Saskatchewan and Manitoba.  The Santa
Maria FT is predicted to cross into central Alberta.