Wheat midge

Although the PPMN is unable to model and predict wheat midge development as in previous years, accumulated precipitation levels during May and June provide guidance in terms of in-field scouting. Access the Provincial Insect Pest Report for Wk09 for updates for this economic insect pest.

Important the accumulated precipitation levels over past 60 days (May 5 to July 3, 2024) were mapped in Figure 1 and ranged from 60 to >250 mm across the prairies, well beyond the 45 mm threshold that facilitates larvae to exit their cocoons to pupate in the soil then emerge. Areas in Figure 1 receiving substantial rainfall this spring need to plan to scout for wheat midge now as adults typically emerge and seek wheat in early July.

Figure 1. 60 day cumulative rainfall (mm) observed across the Canadian prairies for the period of May 5 -July 3, 2024.

Remember – the rate of development and timing of adult midge emergence varies at the field level and can only be verified through in-field scouting. Midge flight coinciding with the beginning of anthesis is a crucial point when in-field counts of wheat midge on plants are carefully compared to the economic thresholds.

Producers opting to grow cultivars susceptible to wheat midge need to be mindful that any historically elevated density of wheat midge occurring over the past one or even possibly six years across the prairies that also has received substantial rainfall since May of 2024, warrants in-field monitoring now. Review the past wheat midge maps here in relation to your fields THEN compare the historical densities to areas of high precipitation in Figure 1.

In-Field Monitoring: When scouting wheat fields, pay attention to the synchrony between flying midge and anthesis.  In-field monitoring for wheat midge should be carried out in the evening (preferably after 8:30 pm or later) when the female midges are most active. On warm (at least 15 ºC), calm evenings, the midge can be observed in the field, laying their eggs on the wheat heads (Fig. 3). Midge populations can be estimated by counting the number of adults present on 4 or 5 wheat heads. Inspect the field daily in at least 3 or 4 locations during the evening.

Figure 3. Wheat midge (Sitodiplosis mosellana) laying their eggs on a wheat head. Photo: AAFC-Beav-S. Dufton and A. Jorgensen.
Figure 4. Macroglenes penetrans, a parasitoid wasp that attacks wheat midge, measures only ~2 mm long.  Photo: AAFC-Beav-S. Dufton.

REMEMBER that in-field counts of wheat midge per head remain the basis of the economic threshold decision.  Also remember that the parasitoid, Macroglenes penetrans (Fig. 4), is actively searching for wheat midge at the same time.  Preserve this parasitoid whenever possible and remember insecticide control options for wheat midge also kill these beneficial insects who help reduce midge populations.

Economic Thresholds for Wheat Midge:
a) To maintain optimum No. 1 grade: 1 adult midge per 8 to 10 wheat heads during the susceptible stage.
b) To maintain yield only: 1 adult midge per 4 to 5 heads. At this level of infestation, wheat yields will be reduced by approximately 15% if the midge is not controlled.
Inspect the developing kernels for the presence of larvae and larval damage.

Albertans… please refer to this week’s Provincial Insect Pest Report Links to link to count reports of wheat midge for 2024.

Wheat midge was featured as the Insect of the Week in 2023 (for Wk08). Be sure to also review wheat midge and its doppelganger, the lauxanid fly, featured as the Insect of the Week in 2019 (for Wk11) – find descriptions and photos to help with in-field scouting!  Additionally, the differences between midges and parasitoid wasps were featured as the Insect of the Week in 2019 (for Wk12).  Remember – not all flying insects are mosquitoes nor are they pests! Many are important parasitoid wasps that regulate insect pest species in our field crops OR pollinators that perform valuable ecosystem services!

Information related to wheat midge biology and monitoring can be accessed by linking to your provincial fact sheet (Saskatchewan Ministry of Agriculture or Alberta Agriculture & Irrigation).  Alberta Agriculture & Irrigation has a YouTube video describing in-field monitoring for wheat midge.  

Additional information can be accessed by reviewing the Wheat midge pages extracted from the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide” (2018) accessible as a free downloadable PDF in either English or French on our new Field Guides page.

Wheat midge

Although the PPMN is unable to model and predict wheat midge development as in previous years, accumulated precipitation levels during May and June provide guidance in terms of in-field scouting. Elliott et al. (2009) reported that wheat midge emergence was delayed or erratic if rainfall did not exceed 20-30 mm during May. Olfert et al. (2016) ran model simulations to demonstrate how rainfall impacts wheat midge population density. The Olfert et al. (2020) model indicated that dry conditions may result in: (a) Delayed adult emergence and oviposition, and (b) Reduced numbers of adults and eggs.

Important the accumulated precipitation levels over past 60 days (May 5 to July 3, 2024) were mapped in Figure 1 and ranged from 60 to >250 mm across the prairies, well beyond the 45 mm threshold that facilitates larvae to exit their cocoons to pupate in the soil then emerge. Areas in Figure 1 receiving substantial rainfall this spring need to plan to scout for wheat midge now as adults typically emerge and seek wheat in early July.

Figure 1. 60 day cumulative rainfall (mm) observed across the Canadian prairies for the period of May 5 -July 3, 2024.

Remember – the rate of development and timing of adult midge emergence varies at the field level and can only be verified through in-field scouting. Midge flight coinciding with the beginning of anthesis is a crucial point when in-field counts of wheat midge on plants are carefully compared to the economic thresholds.

Producers opting to grow cultivars susceptible to wheat midge need to be mindful that any historically elevated density of wheat midge occurring over the past one or even possibly six years across the prairies that also has received substantial rainfall since May of 2024, warrants in-field monitoring now. Review the past wheat midge maps here in relation to your fields THEN compare the historical densities to areas of high precipitation in Figure 1.

In-Field Monitoring: When scouting wheat fields, pay attention to the synchrony between flying midge and anthesis.  In-field monitoring for wheat midge should be carried out in the evening (preferably after 8:30 pm or later) when the female midges are most active. On warm (at least 15 ºC), calm evenings, the midge can be observed in the field, laying their eggs on the wheat heads (Fig. 3). Midge populations can be estimated by counting the number of adults present on 4 or 5 wheat heads. Inspect the field daily in at least 3 or 4 locations during the evening.

Figure 3. Wheat midge (Sitodiplosis mosellana) laying their eggs on a wheat head. Photo: AAFC-Beav-S. Dufton and A. Jorgensen.
Figure 4. Macroglenes penetrans, a parasitoid wasp that attacks wheat midge, measures only ~2 mm long.  Photo: AAFC-Beav-S. Dufton.

REMEMBER that in-field counts of wheat midge per head remain the basis of the economic threshold decision.  Also remember that the parasitoid, Macroglenes penetrans (Fig. 4), is actively searching for wheat midge at the same time.  Preserve this parasitoid whenever possible and remember insecticide control options for wheat midge also kill these beneficial insects who help reduce midge populations.

Economic Thresholds for Wheat Midge:
a) To maintain optimum No. 1 grade: 1 adult midge per 8 to 10 wheat heads during the susceptible stage.
b) To maintain yield only: 1 adult midge per 4 to 5 heads. At this level of infestation, wheat yields will be reduced by approximately 15% if the midge is not controlled.
Inspect the developing kernels for the presence of larvae and larval damage.

Albertans… please refer to this week’s Provincial Insect Pest Report Links to link to count reports of wheat midge for 2024.

Wheat midge was featured as the Insect of the Week in 2023 (for Wk08). Be sure to also review wheat midge and its doppelganger, the lauxanid fly, featured as the Insect of the Week in 2019 (for Wk11) – find descriptions and photos to help with in-field scouting!  Additionally, the differences between midges and parasitoid wasps were featured as the Insect of the Week in 2019 (for Wk12).  Remember – not all flying insects are mosquitoes nor are they pests! Many are important parasitoid wasps that regulate insect pest species in our field crops OR pollinators that perform valuable ecosystem services!

Information related to wheat midge biology and monitoring can be accessed by linking to your provincial fact sheet (Saskatchewan Ministry of Agriculture or Alberta Agriculture & Irrigation).  Alberta Agriculture & Irrigation has a YouTube video describing in-field monitoring for wheat midge.  

Additional information can be accessed by reviewing the Wheat midge pages extracted from the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide” (2018) accessible as a free downloadable PDF in either English or French on our new Field Guides page.

Week 9: Wheat Midge

Wheat midge, Sitodiplosis mosellana, is an important pest of spring wheat, winter wheat, durum wheat and triticale. Spring rye can also experience some damage from wheat midge. Adult wheat midge do not damage their host plant, but do lay eggs that give rise to the damaging larval stage.

Wheat midge larvae feed on the outside of wheat kernels. Larval feeding results in shrunken, shriveled, and/or cracked kernels. Larval feeding can also cause kernel development to be aborted.

Feeding damage caused by larval wheat midge reduces grain yield and the quality of the harvested grains. Grains with wheat midge damage are typically downgraded at the grain elevator.

Wheat midge damage to the kernels is not easy to detect and can go unnoticed. Therefore, scouting for adult wheat midge is necessary to determine if foliar insecticides may be needed to prevent female wheat midge from laying eggs. Scout for adults in the evenings, daily during the susceptible plant stage. Calm evenings are best for scouting. Count the adults on 4-5 wheat heads at 5 locations in the crop to estimate midge per wheat head. Economic thresholds are:

  • >1 wheat midge per 4-5 wheat heads (to prevent yield loss)
  • >1 wheat midge per 8-10 wheat heads (to prevent grade reduction) 

For more information about wheat midge, please visit the Prairie Pest Monitoring Network’s Risk Maps page to see annual wheat midge survey results, and previous Insect of the Week posts about wheat midge and its parasitoid, Macroglenes penetrans. Alberta Agriculture and Irrigation, Saskatchewan Ministry of Agriculture, and Manitoba Agriculture also have great wheat midge information resources and you can find information about wheat midge in Field Crop and Forage Pests and their Natural Enemies in Western Canada (also available in French).

Insect of the Week – Cereal leaf beetle

This week’s Insect of the Week is the cereal leaf beetle. Wheat is their preferred host, but they also feed on oats, barley, corn, rye, triticale, reed canarygrass, ryegrass, fescue, wild oats, millet and other grasses. Adults and larvae feed on the leaf tissue of host plants. Yield quality and quantity is decreased if the flag leaf is stripped. It is also interesting to note that larvae carry all of their own fecal waste with them as protection from predators.


For more information on the cereal leaf beetle, see our Insect of the Week page.



Cereal leaf beetle larva (cc-by 2.0 Christophe Quintin)




Cereal leaf beetle damage (cc-by-nc-sa 2.0 CIMMYT)



Remember the NEW Cutworm Field Guide is free and downloadable in 2017!

Insect of the Week – Wheat midge

This week’s Insect of the Week is the wheat midge. Larvae feed on the surface of developing wheat kernels in spring and winter wheat, durum wheat, triticale and occasionally spring rye. Damage includes aborted, shrivelled, misshapen, cracked, or scared kernels. This lowers grain yield, quality and grade.

For more information on the wheat midge, visit our Insect of the Week page.

Wheat midge – larva (Mike Dolinski, MikeDolinski@hotmail.com

Remember the NEW Cutworm Field Guide is free and downloadable in 2017!