Predicted wheat midge development

Wheat midge overwinter as larval cocoons in the soil.  Soil moisture conditions in May and June can have significant impact on wheat midge emergence.  Adequate rainfall promotes termination of diapause and movement of larval to the sol surface where pupation occurs.  Insufficient rainfall in May and June can result in delayed movement of larvae to the soil surface. Elliott et al. (2009) reported that wheat midge emergence was delayed or erratic  if rainfall did not exceed 20-30 mm during May.  Olfert et al. (2016) ran model simulations to demonstrate how rainfall impacts wheat midge population density. Our wheat midge model (Olfert et al. 2020) indicates that dry conditions may result in: (a) Delayed adult emergence and oviposition, (b) Reduced numbers of adults and eggs.

Wheat midge model runs indicate that, where wheat midge are present, pupation is occurring across Alberta, northwest Saskatchewan and southern Manitoba (Fig. 1). Simulations suggest that, though still less than 15%, adult emergence has begun, most notably across Alberta (Fig. 1). Females lay eggs on developing wheat heads. This typically occurs in evenings when winds are calm. Wheat midge monitoring protocol suggests that wheat fields should be inspected for adults in late June and early July as wheat heads are emerging. The next three weeks are very important for monitoring wheat midge populations for the purpose of making management decisions.

Figure 1. Predicted percent of population of wheat midge (Sitodiplosis mosellana) at adult stage across the Canadian prairies (as of July 5, 2020).

Simulations were run to July 21 to assess population development over the next two weeks (Figs. 2-4). The first graph illustrates development of wheat midge populations near Saskatoon (Fig. 2). Adult emergence has begun and should peak next week, suggesting that monitoring fields for adults should begin in the next few days. Oviposition has just started and larvae will occur soon after.

Figure 2. Predicted wheat midge (Sitodiplosis mosellana) phenology at Saskatoon SK projected to July 21, 2020.

The second graph compares synchrony between wheat midge and wheat for fields near Lacombe (Fig. 3). The graph indicates that adult emergence and oviposition may occur this year when the crop is most susceptible.

Figure 3. Comparison of predicted phenology of wheat midge (Sitodiplosis mosellana) and wheat at Lacombe AB projected to July 21, 2020.

The last graph compares phenology of wheat midge adults near Saskatoon with the phenology of Macroglenes penetrans, a parasitoid of wheat midge (Fig. 4). The parasitioid wasp lays is eggs inside wheat midge eggs. The graph shows that the timing of emergence and oviposition of wheat midge adults is similar to the emergence and oviposition timing of M. penetrans. All of this information can be used as a guide to determine when fields should be monitored.

Figure 4. Comparison of predicted phenology of wheat midge (Sitodiplosis mosellana) and its parasitoid, Macroglenes penetrans, at Saskatoon SK projected to July 21, 2020.

Information related to wheat midge biology and monitoring can be accessed by linking to your provincial fact sheet (Saskatchewan Agriculture or Alberta Agriculture & Forestry).  A review of wheat midge on the Canadian prairies was published by Elliott, Olfert, and Hartley in 2011.  

Alberta Agriculture and Forestry has a YouTube video describing in-field monitoring for wheat midge.  

More information about Wheat midge can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Wheat midge pages but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.