Released July 1, 2022

Jennifer Otani
Categories
Week 8

HAPPY CANADA DAY! This week includes…..

• Weather synopsis
• Predicted grasshopper development
• Predicted wheat midge development
• Predicted diamondback development
• Weekly wind trajectory report
• Field Heroes – access a NEW Pest & Predator podcast
• Provincial entomologist updates
• Links to crop reports
• Previous posts
….and Monday’s Insect of the Week for Week 8 – it’s the strawberry blossom weevil, Anthonomus rubi!

Wishing everyone good weather!

To receive free Weekly Updates automatically, please subscribe to the website!

Questions or problems accessing the contents of this Weekly Update?  Please contact us so we can connect you to our information. Past “Weekly Updates” can be accessed on our Weekly Update page.

SHARE THIS POST

Weather synopsis

Ross Weiss, Tamara Rounce, David Giffen, Owen Olfert, Jennifer Otani and Meghan Vankosky
Categories
Week 8

TEMPERATURE: This past week (June 20-26, 2022) the average daily temperature on the prairies was 1 °C warmer than the previous week and 1 °C warmer than normal (Fig. 1). Similar to last week, the warmest temperatures were observed across Manitoba and southeastern Saskatchewan. The prairie-wide average 30-day temperature (May 28 – June 26, 2022) was 0.5 °C cooler than the long-term average temperature. Average temperatures have been warmest across the southern prairies (Fig. 2).

Figure 1. Seven-day average temperature (°C) across the Canadian prairies for the period of June 20-26, 2022.
Figure 2. 30-day average temperature (°C) across the Canadian prairies for the period of May 28-June 26, 2022.

The growing season (April 1 to June 26, 2022) temperature for the prairies has been 1 °C cooler than climate normal values. A review of specific prairie locations illustrates that Grande Prairie was 1.8 °C cooler than average (Table 1). The growing season has been warmest across western Saskatchewan and southern and central regions of Alberta (Fig. 3).

Figure 3. Growing season average temperature (°C) observed across the Canadian prairies for the period of April 1 to June 26, 2022.
Table 1. Growing season (April 1 – June 26, 2022) temperature and rainfall summary for specific locations across the Canadian prairies.

PRECIPITATION: Weekly (June 20-26) rainfall varied across the prairies. Significant rainfall was reported across southeastern Saskatchewan (Weyburn – 82mm) and from Edmonton (66 mm) to Meadow Lake, Saskatchewan (52 mm). The Peace River region and southwestern Saskatchewan reported rainfall amounts that were generally less than 10 mm (Fig. 4). 30-day rainfall accumulation totals have been well above average across Manitoba and Alberta while rainfall accumulation has been well below normal across Saskatchewan (Fig. 5).

Figure 4 Seven-day cumulative rainfall (mm) observed across the Canadian prairies for the period of June 20-26, 2022.
Figure 5. 30-day cumulative rainfall (mm) observed across the Canadian prairies the past 30 days (May 28-June 26, 2022).

Growing season rainfall for April 1 – June 26, 2022 continues to be greatest across Manitoba and eastern Saskatchewan; growing season rainfall remains below normal across central Saskatchewan and near normal for Alberta (Fig. 6; Table 1).

Figure 6. Growing season cumulative rainfall (mm) observed across the Canadian prairies for the period of April 1 to June 26, 2022.

Growing degree day (GDD) maps for Base 5 ºC and Base 10 ºC (April 1-June 27, 2022) can be viewed by clicking the hyperlinks. Over the past 7 days (June 21-27, 2022), the lowest temperatures recorded across the Canadian prairies ranged from < -1 to >10 °C while the highest temperatures observed ranged from <21 to >32 °C. Again this week, areas of the prairies hit warmer temperatures with a slight bump in the number of sites experiencing days at or above 25 °C across the prairies and a moderate increase in the sites recording days at or above 30 °C. Access these maps and more using the AAFC Maps of Historic Agroclimate Conditions interface.

The maps above are all produced by Agriculture and Agri-Food Canada. Growers can bookmark the AAFC Current Conditions Maps for the growing season. Historical weather data can be accessed at the AAFC Drought Watch Historical website, Environment Canada’s Historical Data website, or your provincial weather network. The AAFC Canadian Drought Monitor also provides geospatial maps updated monthly.

SHARE THIS POST

Predicted grasshopper development

Ross Weiss, Tamara Rounce, David Giffen, Owen Olfert, Jennifer Otani and Meghan Vankosky
Categories
Week 8

The grasshopper (Acrididae: Melanoplus sanguinipes) model predicts development using biological parameters known for the pest species and environmental data observed across the Canadian prairies on a daily basis. Model outputs provided below as geospatial maps are a tool to help time in-field scouting on a regional scale but local development can vary and is only accurately assessed through in-field scouting.

SCOUT NOW – Some areas of the Canadian prairies are presently experiencing high densities of nymphs and economically important species are present. Review lifecycle and damage information for this pest to support in-field scouting.

Warm, dry conditions across central and southern regions of Saskatchewan have resulted in rapid grasshopper development. Model simulations were used to estimate grasshopper development as of June 26, 2022. The grasshopper hatch is nearly complete for the southern prairies (Fig. 1). Hatch is still progressing across the Parkland and Peace River regions. Based on estimates of average nymphal development, first to fifth instar nymphs should be occurring across southern and central regions of all three prairie provinces (Fig. 2).

Figure 1. Predicted migratory grasshopper (Melanoplus sanguinipes) hatch (%) across the Canadian prairies as of June 26, 2022.
Figure 2. Predicted migratory grasshopper (Melanoplus sanguinipes) development, presented as average instar, across the Canadian prairies as of June 26, 2022.

Grasshopper Scouting Tips:
Review grasshopper diversity and photos of nymphs, adults, and non-grasshopper species to aid in-field scouting from egg hatch and onwards.
● Access the PPMN’s Grasshopper Monitoring Protocol as a guide to help implement in-field monitoring.
● Review grasshopper lifecycle, damage and scouting and economic thresholds to support sound management decisions enabling the preservation of beneficial arthropods and mitigation of economic losses.

Biological and monitoring information (including tips for scouting and economic thresholds) related to grasshoppers in field crops is posted by Manitoba Agriculture and Resource DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, the BC Ministry of Agriculture, and the Prairie Pest Monitoring Network.  Also, refer to the grasshopper pages within the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” (2018) accessible as a free downloadable PDF in either English or French on our new Field Guides page. Review the historical grasshopper maps based on late-summer in-field counts of adults performed across the prairies.

SHARE THIS POST

Predicted wheat midge development

Ross Weiss, Tamara Rounce, David Giffen, Owen Olfert, Jennifer Otani and Meghan Vankosky
Categories
Week 8

Soil moisture conditions in May and June can have significant impacts on wheat midge emergence. Where wheat midge cocoons are present in soil, the 2022 growing season’s rainfall during May and June should be sufficient to terminate diapause and induce the larvae to move to the soil surface.

The map in Figure 1 provides a visual representation of regional estimates of wheat midge movement to the soil surface, where pupal development will occur, then adults will begin to emerge. Remember – the rate of development and timing of adult midge emergence varies at the field level and can only be verified through in-field scouting. Fields within regions receiving sufficient rainfall should scout! Midge flight coinciding with the beginning of anthesis is a crucial point when in-field counts of adults on plants are carefully compared to the economic thresholds.

As of June 26, 2022, model simulations predict that larvae (surface) and pupae are present with limited occurrence of adults. In terms of occurrence of pupae, wheat midge development is most advanced across central Saskatchewan, Manitoba and the Peace River region (British Columbia) (Fig. 1). The first appearance of adults is predicted near Regina and across southern Manitoba (Fig. 2). Model projections for July 3, 2022, indicate that the first appearance of adults should begin across the central prairies and Peace River region over the weekend.

Figure 1. Percent of wheat midge larval population (Sitodiplosis mosellana) that is in the pupal stage, across western Canada, as of June 26, 2022.
Figure. 2. Percent of wheat midge population (Sitodiplosis mosellana) that is in the adult stage, across western Canada, as of June 26, 2022.

In-Field Monitoring: When scouting wheat fields, pay attention to the synchrony between flying midge and anthesis.  

In-field monitoring for wheat midge should be carried out in the evening (preferably after 8:30 pm or later) when the female midges are most active. On warm (at least 15 ºC), calm evenings, the midge can be observed in the field, laying their eggs on the wheat heads (Fig. 3). Midge populations can be estimated by counting the number of adults present on 4 or 5 wheat heads. Inspect the field daily in at least 3 or 4 locations during the evening.

Figure 3. Wheat midge (Sitodiplosis mosellana) laying their eggs on a wheat head. Photo: AAFC-Beav-S. Dufton and A. Jorgensen.

REMEMBER that in-field counts of wheat midge per head remain the basis of the economic threshold decision.  Also remember that the parasitoid, Macroglenes penetrans (Fig. 4), is actively searching for wheat midge at the same time.  Preserve this parasitoid whenever possible and remember insecticide control options for wheat midge also kill these beneficial insects who help reduce midge populations.

Figure 4. Macroglenes penetrans, a parasitoid wasp that attacks wheat midge, measures only ~2 mm long.  Photo: AAFC-Beav-S. Dufton.

Economic Thresholds for Wheat Midge:
a) To maintain optimum No. 1 grade: 1 adult midge per 8 to 10 wheat heads during the susceptible stage.
b) To maintain yield only: 1 adult midge per 4 to 5 heads. At this level of infestation, wheat yields will be reduced by approximately 15% if the midge is not controlled.
Inspect the developing kernels for the presence of larvae and larval damage.

Wheat midge was featured as the Insect of the Week in 2021 (for Wk07). Be sure to also review wheat midge and its doppelganger, the lauxanid fly, featured as the Insect of the Week in 2019 (for Wk11) – find descriptions and photos to help with in-field scouting!  Additionally, the differences between midges and parasitoid wasps were featured as the Insect of the Week in 2019 (for Wk12).  Remember – not all flying insects are mosquitoes nor are they pests! Many are important parasitoid wasps that actually regulate insect pest species in our field crops OR pollinators that perform valuable ecosystem services!

Information related to wheat midge biology and monitoring can be accessed by linking to your provincial fact sheet (Saskatchewan Agriculture or Alberta Agriculture & Forestry).  Alberta Agriculture and Forestry has a YouTube video describing in-field monitoring for wheat midge.  

Additional information can be accessed by reviewing the Wheat midge pages extracted from the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide” (2018) accessible as a free downloadable PDF in either English or French on our new Field Guides page.

SHARE THIS POST

Predicted diamondback moth development

Ross Weiss, Tamara Rounce, David Giffen, Owen Olfert, Jennifer Otani, Shelley Barkley, Carter Peru, James Tansey, John Gavloski and Meghan Vankosky
Categories
Week 8

Diamondback moths (DBM; Plutella xylostella) are a migratory invasive species. Each spring adult populations migrate northward to the Canadian prairies on wind currents from infested regions in the southern or western U.S.A. Upon arrival to the prairies, migrant diamondback moths begin to reproduce and this results in subsequent non-migrant populations that may have three or four generations during the growing season.

Model simulations to June 26, 2022, indicate that the first generation of non-migrant adults (based on mid May arrival dates) are currently occurring across the Canadian prairies and that the start of the second generation is emerging in southern Manitoba (Fig. 1).

Figure 1. Predicted number of non-migrant generations of diamondback moth (Plutella xylostella) expected to have occurred across the Canadian prairies as of June 26, 2022.

Spring Pheromone Trap Monitoring of Adult Males: Across the Canadian prairies, spring monitoring is initiated to acquire weekly counts of adult moths attracted to pheromone-baited delta traps deployed in fields. Weekly trap interceptions are observed to generate cumulative counts. Summaries or maps of cumulative DBM data are available for Manitoba, Saskatchewan and Alberta. These cumulative count estimates are broadly categorized to help producers prioritize and time in-field scouting for larvae.

In-Field Monitoring: Remove plants in an area measuring 0.1 m² (about 12″ square), beat them onto a clean surface and count the number of larvae (Fig. 2) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

Figure 2. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.

The economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m² (approximately 1-2 larvae per plant).

This image has an empty alt attribute; its file name is DBM_Pupa_AAFC-1.jpg
Figure 3. Diamondback moth pupa within silken cocoon.
This image has an empty alt attribute; its file name is DBM_adult_AAFC-1.png
Figure 4. Diamondback moth.

Biological and monitoring information for DBM (including tips for scouting and economic thresholds) is posted by Manitoba Agriculture and Resource DevelopmentSaskatchewan Agriculture, and the Prairie Pest Monitoring Network.  Also, refer to the diamondback moth pages within the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” (2018) accessible as a free downloadable PDF in either English or French on our new Field Guides page.

Diamondback moth was the Insect of the Week for Wk10 in 2021!

SHARE THIS POST

Weekly Wind Trajectory Report for June 27

Ross Weiss, Serge Trudel, David Giffen, Owen Olfert, Jennifer Otani and Meghan Vankosky
Categories
Week 8

Access background information on how and why wind trajectories are monitored. Reverse and forward trajectories are available in this report.

1. REVERSE TRAJECTORIES (RT)
Since May 1, 2022, the majority of reverse trajectories that have crossed the prairies have originated from the Pacific Northwest (Idaho, Oregon and Washington). This past week (June 21-27, 2022) the number of incoming trajectories was lower than the week of June 14-20, 2022 (Fig. 1).

Figure 1. Average number (based on a 5-day running average) of reverse trajectories (RT) crossing the prairies for the period of June 1-27, 2022.

a. Pacific Northwest (Idaho, Oregon, Washington) – The majority of Pacific Northwest reverse trajectories continue to pass over southern and central Alberta and western Saskatchewan (Fig. 2). This past week (June 21-27, 2022) the ECCC model predicted that 77 reverse trajectories would cross the prairies. This is significantly less than the number of reverse trajectories predicted for the period of June 14-20 (n=124).

Figure 2. Total number of dates with reverse trajectories originating over the Idaho, Oregon, and Washington that have crossed the prairies between April 1 and June 27, 2022.

b. Mexico and southwest USA (Texas, California) – This week (June 21-27, 2022), a total of 13 reverse trajectories were predicted to cross the prairies (n=44 for June 14-20). Most reverse trajectories from this region of southern North America have crossed Manitoba during the 2022 growing season.

Figure 3. The total number of dates with reverse trajectories originating over Mexico, California and Texas that have crossed the prairies between April 1 and June 27, 2022.

c. Oklahoma and Texas – This week reverse trajectories have passed over Manitoba and Watrous, Saskatchewan (Fig. 4). This week there were significantly fewer (n=5) reverse trajectories than for the period of June 14-20, 2022 (n=33).

Figure 4. The total number of dates with reverse trajectories originating over Texas and Oklahoma that have crossed the prairies between May 1 and June 27, 2022.

d. Nebraska and Kansas – This past week (June 21-27, 2022), reverse trajectories originating from Kansas and Nebraska have crossed Manitoba and Yorkton, Saskatchewan (Fig. 5). The ECCC model predicted that 5 reverse trajectories passed over the prairies. This is a significant decrease from the previous week (n=51).

Figure 5. The total number of dates with reverse trajectories originating over Kansas and Nebraska that have crossed the prairies between April 1 and June 27, 2022.

2. FORWARD TRAJECTORIES (FT)
The following map presents the total number of dates (since April 1, 2022) with forward trajectories (originating from Mexico and USA) that were predicted to cross the Canadian prairies (Fig. 6). This week (June 21-27, 2022) there was a decrease in the number of (n=19) forward trajectories predicted to cross the prairies (last week n=50). Results indicate that the greatest number of forward trajectories entering the prairies have originated from the Pacific Northwest (Idaho, Oregon, Washington), Montana and Wyoming.

Figure 6. Total number of dates with forward trajectories, originating from various regions of the United States and Mexico, crossing the prairies between April 1 and June 27, 2022.

View historical PPMN wind trajectory reports by following this link which sorts the reports from most recent to oldest.

SHARE THIS POST

Field heroes

Jennifer Otani
Categories
Week 8

The Field Heroes campaign continues to raise awareness of the role of beneficial insects in western Canadian crops.

Field Heroes resources include:

  1. Real Agriculture went live in 2022 with Season 3 of the Pest and Predators podcast series!
    NEW Episode 18 – Preying in the canola canopy Jennifer Otani (Agriculture and Agri-Food Canada-Beaverlodge) and Shaun Haney (RealAg). Published online June 29, 2022.
    • Episode 17 – Spiders and their amazing appetites Carol Frost (University of Alberta) and Shaun Haney (RealAg). Published online June 14, 2022.
    • Episode 16 – Parasitoids prey on pests in pulses Nevin Rosaasen (Alberta Pulse Growers) and Shaun Haney (RealAg). Published online May 31, 2022.
    • Episode 15 – Aphid milkshakes: Green lacewing’s fave Tyler Wist (Agriculture and Agri-Food Canada-Saskatoon) and Shaun Haney (RealAg). Published online May 17, 2022.
    • Episode 14 – Mistaken identities: Insect pest or beneficial? John Gavloski (Manitoba Agriculture and Resource Development) and Shaun Haney (RealAg). Published online May 3, 2022.
    • Episode 13 – Weather effects: Predicting pest populations James Tansey (Saskatchewan Ministry of Agriculture), Meghan Vankosky (Agriculture and Agri-Food Canada-Saskatoon), and Shaun Haney (RealAg). Published online April 19, 2022.
    • Review SEASON 2 of the Pest and Predators podcasts!
    • Review SEASON 1 of the Pest and Predators podcasts!
  2. The Pests and Predators Field Guide is filled with helpful images for quick insect identification and plenty of tips to manage the pests AND natural enemies in your fields. Claim your free copy at http://fieldheroes.ca/fieldguide/ or download a free copy to arm your in-field scouting efforts!
  3. Review the Sweep-net Video Series including:
    How to sweep a field. Meghan Vankosky (Agriculture and Agri-Food Canada-Saskatoon). Published online 2020.
    What’s in my sweep-net? Meghan Vankosky (Agriculture and Agri-Food Canada-Saskatoon). Published online 2020.
    Why use a sweep-net? Meghan Vankosky (Agriculture and Agri-Food Canada-Saskatoon). Published online 2020.

Follow @FieldHeroes!

SHARE THIS POST

Provincial insect pest report links

Shelley Barkley, John Gavloski, James Tansey, Carter Peru and Jennifer Otani
Categories
Week 8

Provincial entomologists provide insect pest updates throughout the growing season so link to their information:

MANITOBA’S Crop Pest Updates for 2022 are up and running! Access a PDF copy of the June 29, 2022 issue here. Bookmark their Crop Pest Update Index to readily access these reports and also bookmark their insect pest homepage to access fact sheets and more!
Seedcorn maggot and wheat stem maggot in MB were new additions to the June 29 issue.
Diamondback moth pheromone trap monitoring update for MB – Traps will come down at the end of this week. Review the detailed summary of cumulative trap counts from 52 sites deployed across the province.
Armyworm pheromone trap monitoring is underway in MB – Review this summary (as of June 22, 2022) of counts compiled from Manitoba, Eastern Canada and several northeast states of the United States.

SASKATCHEWAN’S Crop Production News for 2022 is up and running! Access the online Issue #3 (June 2022) here and find updates linking to information for Grasshopers in pulse crops, and Diamondback moth. Bookmark their insect pest homepage to access important information! Crops Blog Posts are updated through the growing season and note this link for July’s Crop Diagnostic School.
Diamondback moth pheromone trap monitoring update for SK – Access this link to review counts summarized regionally.

ALBERTA’S Insect Pest Monitoring Network webpage links to insect survey maps, live feed maps, insect trap set-up videos, and more. There is also a Major Crops Insect webpage. The new webpage does not replace the Insect Pest Monitoring Network page. Remember, AAF’s Agri-News occasionally includes insect-related information. Twitter users can connect to #ABBugChat Wednesdays at 10:00 am.
Wheat midge pheromone monitoring update for AB – Cumulative counts arising from weekly data are available so refer to the Live Map.
Cabbage seedpod weevil monitoring update for AB – Cumulative counts arising from weekly data are available so refer to the Live Map.
Bertha armyworm pheromone trap monitoring update for AB – Cumulative counts arising from weekly data are available so refer to the Live Map.
Diamondback moth pheromone trap monitoring update for AB – Cumulative counts arising from weekly data are available so refer to the Live Map.
Cutworm live monitoring map for AB – Reports continue to come in so refer to the Live Map to review areas where cutworms are being found. Use this online form to report cutworms in Alberta.

SHARE THIS POST

Crop report links

Jennifer Otani
Categories
Week 8

Click the provincial name below to link to online crop reports produced by:
Manitoba Agriculture and Resource Development (or access a PDF copy of the June 28, 2022 report).
Saskatchewan Agriculture (or access a PDF copy of the June 21-27, 2022 report).
Alberta Agriculture, Forestry, and Rural Economic Development (or access a PDF copy of the June 21, 2022 report plus the June 27, 2022 report).

The following crop reports are also available:
• The United States Department of Agriculture (USDA) produces a Crop Progress Report (access a PDF copy of the June 27, 2022 edition).
• The USDA’s Weekly Weather and Crop Bulletin (access a PDF copy of the June 28, 2022 edition).

SHARE THIS POST

Previous posts

Jennifer Otani
Categories
Week 8

As the growing season progresses, the various Weekly Update topics move on and off the priority list for in-field scouting but they should be kept at hand to support season-long monitoring. Click to review these earlier 2022 Posts (organized alphabetically):
2021 Risk and forecast maps
Alfalfa weevil – predicted development (Wk06)
Bertha armyworm – predicted development (Wk07)
Cereal leaf beetle – predicted development (Wk06)
Crop protection guides (Wk02)
Cutworms (Wk02)
European corn borer – Canadian standardized assessment 2.0 (Wk02)
Field heroes (Wk06)
Field guides – New webpage to access (Wk02)
Flea beetles (Wk01; IOTW)
iNaturalist.ca (Wk02)
Invasive insect species – Early detection (Wk02)
Scouting charts – canola and flax (Wk03)
Ticks and Lyme disease (Wk02)
Wind trajectory reports released in 2022

SHARE THIS POST

Strawberry blossom weevil: a new invasive pest of berries—one to watch for

Michelle Franklin, Warren Wong, Tracy Hueppelsheuser, Cynthia Schock and Jennifer Otani
Categories
Week 8

This week’s insect, the strawberry blossom weevil (Anthonomus rubi) is a recent invader to British Columbia. It is native to Europe, Asia, and parts of North Africa. As its name implies it is a serious pest of strawberries, however, it does have a much wider host range including many plants in the family Rosaceae – raspberries, blackberries, and roses to name a few.

It was first found in Abbotsford, British Columbia (BC) in 2019 on raspberries and has since been found to be established throughout the Fraser Valley of BC on cultivated and wild host plants. This is the first report of strawberry blossom weevil in North America. Due to the presence of strawberry blossom weevil in BC, the United States Department of Agriculture Animal and Plant Health Inspection Service (APHIS) amended entry requirements for Fragaria, Rubus, and Rosa plants. The USA now requires a phytosanitary certificate to move these plants from Canada into the USA (Federal Order DA-2021-25).

The strawberry blossom weevil lays its eggs in closed buds and clips the stem just below to prevent further bud development.

The egg hatches and the weevil larva develops inside of the damaged bud. Once mature, an adult weevil chews a hole in the bud from which it emerges. It completes a single generation per year. In Europe, bud losses associated with strawberry blossom weevil damage range from 5 to 90% and have led to yield losses over 60%. The strawberry blossom weevil can be confused with the strawberry clipper weevil (Anthonomus signatus) in Canada due to its similar biology and crop damage.

Although there is a historical record of strawberry clipper weevil being in BC, it is primarily a pest in berry crops in eastern Canada and has not been detected during our surveys in 2020-2022 in southwest BC. Adult strawberry blossom weevils are small (2.5-3.0 mm), black, with a small white patch of scales on the scutellum (back), and a long slender rostrum (snout). Larvae, found within damaged buds are c-shaped, with a yellowish-brown head capsule and cream coloured body that grows to 2.5 to 3 mm.

Adult weevils naturally drop when disturbed so they can be detected using beat sampling (tapping) in plants. They are also detectable using yellow sticky cards. Visual surveys for damaged buds with severed stems can also be useful when searching for strawberry blossom weevil.

Although this pest has not been detected to date on the Prairies, a nationwide survey is underway this summer to delineate the distribution of this pest in Canada. In collaboration with Agriculture and Agri-Food Canada, a Story Map has been created to provide an easily digestible summary of the survey underway using pictures, text, and interactive maps all accessible here. We are looking for community-based records of strawberry blossom weevil so, if you would like to get involved, please submit pictures of any suspected strawberry blossom weevil to our iNaturalist project (Anthonomus rubi in North America · iNaturalist).

References:
• Franklin, M. T., Hueppelsheuser, T. K., Abram, P. K., Bouchard, P., Anderson, R. S., & Gibson, G. A. (2021). The Eurasian strawberry blossom weevil, Anthonomus rubi (Herbst, 1795), is established in North America. The Canadian Entomologist, 153(5), 579-585. https://doi.org/10.4039/tce.2021.28
USDA APHIS | APHIS amends entry requirements for importation of Fragaria spp., Rosa spp., and Rubus spp. plants from Canada into the United States
Raspberries – Province of British Columbia (gov.bc.ca)
Anthonomus rubi (strawberry blossom weevil) – Fact sheet – Canadian Food Inspection Agency (canada.ca)
Strawberry Blossom Weevil – Invasive Species Council of British Columbia (bcinvasives.ca)

SHARE THIS POST

SHARE THIS POST