Released August 12, 2022

Meghan Vankosky and Jennifer Otani
Categories
Week 14

This week includes…..

• Weather synopsis
• Predicted grasshopper development
• Predicted diamondback development
• Lygus bug monitoring
• Aphids in field crops
• Pre-harvest intervals (PHI)
• Provincial insect pest report links
• Crop report links
• Previous posts
….and Monday’s Insect of the Week for Week 14 – it’s foreign grain beetle (Ahasverus advena)!

Wishing everyone good SCOUTING and harvesting weather!

To receive free Weekly Updates automatically, please subscribe to the website!

Questions or problems accessing the contents of this Weekly Update?  Please contact us so we can connect you to our information. Past “Weekly Updates” can be accessed on our Weekly Update page.

SHARE THIS POST

Weather synopsis

Ross Weiss, Tamara Rounce, David Giffen, Owen Olfert, Jennifer Otani and Meghan Vankosky
Categories
Week 14

TEMPERATURE: Average temperatures for the 2022 growing season have been similar to long term average values. This past week (August 1-7, 2022), the average daily temperature across the prairies was 2°C cooler than the previous week and 1°C  warmer than the long-term normal (climate normal). The warmest temperatures were observed for the southern prairies (Fig. 1).

Figure 1. Seven-day average temperature (°C) across the Canadian prairies for the period of August 1-7, 2022.

The prairie-wide average 30-day temperature (July 9 – August 7, 2022) was 1.5°C warmer than long-term average values. Average temperatures have been warmest across southeastern Alberta and southwestern Saskatchewan (Fig. 2).

Figure 2. 30-day average temperature (°C) across the Canadian prairies for the period of July 9 to August 7, 2022.

The average growing season (April 1 – August 7, 2022) temperature for the prairies has been similar to that expected based on climate normal values. The growing season has been coolest across the Parkland and Peace River regions (Fig. 3).

Figure 3. Growing season average temperature (°C) observed across the Canadian prairies for the period of April 1 to August 7, 2022.

PRECIPITATION: The lowest weekly (August 1 to 7) precipitation accumulation occurred across southern and central regions of all three prairie provinces (Fig. 4). 30-day (July 9 – August 7, 2022) rainfall amounts have been well below average for northern and western Alberta and near normal across the central and southern regions of Alberta and Saskatchewan (Fig. 5). Precipitation has been above normal in southeastern Saskatchewan and eastern Manitoba.

Figure 4 Seven-day cumulative rainfall (mm) observed across the Canadian prairies for the period of August 1-7, 2022.
Figure 5. 30-day cumulative rainfall (mm) observed across the Canadian prairies the past 30 days (July 9 to August 7, 2022).

Average growing season rainfall for the prairies (April 1 – August 7, 2022) has been approximately 160% of normal. Total rainfall continues to be greatest across Manitoba and eastern Saskatchewan. Cumulative rainfall amounts have been near normal for Saskatchewan and Alberta (Fig. 6).

Figure 6. Growing season cumulative rainfall (mm) observed across the Canadian prairies for the period of April 1 to August 7, 2022.

Growing degree day (GDD) maps can be accessed using the AAFC Maps of Historic Agroclimate Conditions interface.

The maps above are all produced by Agriculture and Agri-Food Canada. Growers can bookmark the AAFC Current Conditions Maps for the growing season. Historical weather data can be accessed at the AAFC Drought Watch Historical website, Environment Canada’s Historical Data website, or your provincial weather network. The AAFC Canadian Drought Monitor also provides geospatial maps updated monthly.

SHARE THIS POST

Predicted grasshopper development

Ross Weiss, Tamara Rounce, David Giffen, Owen Olfert, Jennifer Otani and Meghan Vankosky
Categories
Week 14

The grasshopper (Acrididae: Melanoplus sanguinipes) model predicts development using biological parameters known for the pest species and environmental data observed across the Canadian prairies on a daily basis. Model outputs provided below as geospatial maps are a tool to help time in-field scouting on a regional scale yet local development can vary and is only accurately assessed through in-field scouting.

Some areas of the Canadian prairies are presently experiencing high densities of economically important species. Review lifecycle and damage information for this pest to support in-field scouting.

Model simulations were used to estimate grasshopper development as of August 7, 2022. Potential risk continues to be greatest across central and southern regions of Saskatchewan and southeastern Alberta. Adults should now be occurring across central and southern regions of all three prairie provinces. Females are beginning to lay eggs in the soil. Development of grasshopper populations near Moose Jaw, Saskatchewan suggests that local populations are in the adult stage and that oviposition is progressing (Fig. 1). Model output indicates that populations are transitioning to the egg stage (Fig. 2). Potential risk continues to be greatest across the central and southern regions of Saskatchewan.

Figure 1. Predicted development of the migratory grasshopper (Melanoplus sanguinipes) population near Moose Jaw, Saskatchewan as of August 7, 2022.
Figure 2. Percentage of the migratory grasshopper (Melanoplus sanguinipes) population expected to be in the egg stage across the Canadian prairies as of August 7, 2022.

Earlier oviposition can result in above average production of eggs and increased overwintering survival of eggs. The oviposition index provides a method to assess where egg production is greatest; higher oviposition index values indicate where egg production is greatest. Model runs for the 2022 growing season (April 1 to August 7, 2022) predict that oviposition rates should be greatest near Winnipeg, Manitoba, Moose Jaw, Saskatchewan and Medicine Hat, Alberta (Fig. 3).

Figure 3. Grasshopper (Melanoplus sanguinipes) oviposition index across the Canadian prairies as of August 7, 2022 . Higher ovipositional index values indicate greater potential for oviposition.

Grasshopper Scouting Tips:
Review grasshopper diversity and photos of nymphs, adults, and non-grasshopper species to aid in-field scouting from egg hatch and onwards.
● Access the PPMN’s Grasshopper Monitoring Protocol as a guide to help implement in-field monitoring.
● Review grasshopper lifecycle, damage and scouting and economic thresholds to support sound management decisions enabling the preservation of beneficial arthropods and mitigation of economic losses.

Biological and monitoring information (including tips for scouting and economic thresholds) related to grasshoppers in field crops is posted by Manitoba Agriculture and Resource DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, the BC Ministry of Agriculture, and the Prairie Pest Monitoring Network.  Also, refer to the grasshopper pages within the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” (2018) accessible as a free downloadable PDF in either English or French on our new Field Guides page. Review the historical grasshopper maps based on late-summer in-field counts of adults performed across the prairies.

SHARE THIS POST

Predicted diamondback moth development

Ross Weiss, Tamara Rounce, David Giffen, Owen Olfert, Jennifer Otani, Shelley Barkley, Carter Peru, James Tansey, John Gavloski and Meghan Vankosky
Categories
Week 14

Diamondback moths (DBM; Plutella xylostella) are a migratory invasive species. Each spring adult populations migrate northward to the Canadian prairies on wind currents from infested regions in the southern or western U.S.A. Upon arrival to the prairies, migrant diamondback moths begin to reproduce and this results in subsequent non-migrant populations that may have three or four generations during the growing season.

Model simulations to August 7, 2022, indicate that the third generation of non-migrant adults (based on mid-May arrival dates) are currently occurring across most of the prairies (Fig. 1). DBM development is predicted to be marginally greater in 2022 than expected based on long-term average values (Fig. 2).

Figure 1. Predicted number of non-migrant generations of diamondback moth (Plutella xylostella) expected to have occurred across the Canadian prairies as of August 7, 2022.
Figure 2. Long-term predicted number of non-migrant generations of diamondback moth (Plutella xylostella) expected to have occurred across the Canadian prairies as of August 7, based on climate normal data.

Spring Pheromone Trap Monitoring of Adult Males: Across the Canadian prairies, spring monitoring is initiated to acquire weekly counts of adult moths attracted to pheromone-baited delta traps deployed in fields. Weekly trap interceptions are observed to generate cumulative counts. Summaries or maps of cumulative DBM data are available for Manitoba, Saskatchewan and Alberta. These cumulative count estimates are broadly categorized to help producers prioritize and time in-field scouting for larvae.

In-Field Monitoring: Remove plants in an area measuring 0.1 m² (about 12″ square), beat them onto a clean surface and count the number of larvae (Fig. 2) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

Figure 3. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.

The economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m² (approximately 1-2 larvae per plant).

This image has an empty alt attribute; its file name is DBM_Pupa_AAFC-1.jpg
Figure 4. Diamondback moth pupa within silken cocoon.
This image has an empty alt attribute; its file name is DBM_adult_AAFC-1.png
Figure 5. Adult diamondback moth.

Biological and monitoring information for DBM (including tips for scouting and economic thresholds) is posted by Manitoba Agriculture and Resource DevelopmentSaskatchewan Agriculture, and the Prairie Pest Monitoring Network.  Also, refer to the diamondback moth pages within the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” (2018) accessible as a free downloadable PDF in either English or French on our new Field Guides page.

Diamondback moth was the Insect of the Week for Wk10 in 2021!

SHARE THIS POST

Lygus bug monitoring

Jennifer Otani
Categories
Week 14

On the Canadian prairies, lygus bugs (Heteroptera: Miridae) are normally a complex of several native species usually including Lygus lineolaris, L. keltoni, L. borealis, L. elisus although several more species are distributed throughout Canada. The species of Lygus forming the “complex” can vary by host plant, by region or even seasonally.

Lygus bugs are polyphagous (i.e., feed on plants belonging to several Families of plants) and multivoltine (i.e., capable of producing multiple generations per year). Both the adult (Fig. 1) and five nymphal instar stages (Fig. 2) are a sucking insect that focuses feeding activities on developing buds, pods and seeds. Adults overwinter in northern climates. The economic threshold for Lygus in canola is applied at late flower and early pod stages.  

Recent research in Alberta has resulted in a revision to the thresholds recommended for the management of Lygus in canola. Under ideal growing conditions (i.e., ample moisture) a threshold of 20-30 lygus per 10 sweeps is recommended. Under dry conditions, a lower threshold may be used, however, because drought limits yield potential in canola, growers should be cautious if considering the use of foliar-applied insecticide at lygus densities below the established threshold of 20-30 per 10 sweeps. In drought-affected fields that still support near-average yield potential, a lower threshold of ~20 lygus per 10 sweeps may be appropriate for stressed canola. Even if the current value of canola remains high (e.g., >$19.00 per bu), control at densities of <10 lygus per 10 sweeps is not likely to be economical. Research indicates that lygus numbers below 10 per 10 sweeps (one per sweep) can on occasion increase yield in good growing conditions – likely through plant compensation for a small amount of feeding stress.

Figure 1. Adult Lygus lineolaris (5-6 mm long) (photo: AAFC-Saskatoon).
Figure 2. Fifth instar lygus bug nymph (3-4 mm long) (photo: AAFC-Saskatoon).

Damage: Lygus bugs have piercing-sucking mouthparts and physically damage the plant by puncturing the tissue and sucking plant juices. The plants also react to the toxic saliva that the insects inject when they feed. Lygus bug infestations can cause alfalfa to have short stem internodes, excessive branching, and small, distorted leaves. In canola, lygus bugs feed on buds and blossoms and cause them to drop. They also puncture seed pods and feed on the developing seeds causing them to turn brown and shrivel.

Scouting tips to keep in mind: Begin monitoring canola when it bolts and continue until seeds within the pods are firm. Since adults can move into canola from alfalfa, check lygus bug numbers in canola when nearby alfalfa crops are cut.

Sample the crop for lygus bugs on a sunny day when the temperature is above 20 °C and the crop canopy is dry. With a standard insect net (38 cm diameter), take ten 180 ° sweeps. Count the number of lygus bugs in the net. Sampling becomes more representative IF repeated at multiple spots within a field so sweep in at least 10 locations within a field to estimate the density of lygus bugs.

How to tell them apart: The 2019 Insect of the Week’s doppelganger for Wk 15 was lygus bug versus the alfalfa plant bug while Wk 16 featured lygus bug nymphs vs. aphids!  Both posts include tips to discern the difference between when doing in-field scouting!

Biological and monitoring information related to Lygus in field crops is posted by the provinces of Manitoba or Alberta fact sheets or the Prairie Pest Monitoring Network’s monitoring protocol.  Also refer to the Lygus pages within the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” (2018) accessible as a free downloadable PDF in either English or French on our new Field Guides page. The Canola Council of Canada’s “Canola Encyclopedia” also summarizes Lygus bugs. The Flax Council of Canada includes Lygus bugs in their Insect Pest downloadable PDF chapter plus the Saskatchewan Pulse Growers summarize Lygus bugs in faba beans.

SHARE THIS POST

Aphids in field crops

Jennifer Otani
Categories
Week 14

Aphid populations can quickly increase at this point in the season and particularly when growing conditions are warm and dry. Over the years, both the Weekly Updates and Insect of the Week included aphid-related information so here’s a list of these items to access when scouting fields:

Aphidius wasp (Insect of the Week; 2015 Wk15)
Aphids in canola (Insect of the Week; 2016 Wk13)
Aphids in cereals (Insect of the Week; 2017 Wk09)
Cereal aphid manager APP (Weekly Update; 2021 Wk07)
Ladybird larva vs. lacewing larva (Insect of the Week; 2019 Wk18)
Ladybird beetles and mummies (Weekly Update; 2020 Wk15)
Lygus bug nymphs vs. aphids (Insect of the Week; 2019 Wk16)
Hoverflies vs. bees vs. yellow jacket wasps (Insect of the Week; 2019 Wk19)
Soybean aphids and aphid annihilating allies (Insect of the Week; 2022 Wk07)
Syrphid flies (Insect of the Week; 2015 Wk16)

SHARE THIS POST

Pre-Harvest Intervals (PHI)

Jennifer Otani
Categories
Week 14

Remember your pre-harvest intervals. The PHI refers to the minimum number of days between a pesticide application and swathing or straight combining of a crop.  The PHI recommends sufficient time for a pesticide to break down. PHI values are both crop- and pesticide-specific.  Adhering to the PHI is important for a number of health-related reasons but also because Canada’s export customers strictly regulate and test for the presence of trace residues of pesticides.

Here are a few resources to help:
• Information about PHI and Maximum Residue Limits (MRL) is available on the Keep It Clean website.
• The Pest Management Regulatory Agency has a fact sheet, “Understanding Preharvest Intervals for Pesticides” or download a free PDF copy.
• Use Keeping It Clean’s “Spray to Swath Interval Calculator” to accurately estimate:
◦ PHI for canola, chickpeas, lentils, faba beans, dry beans, or peas.
◦ How long to wait, if the crop’s already been sprayed.
◦ To find a pesticide to suit your timeline.
• Access the Pre-Harvest Glyphosate Stage Guide.
• And remember Provincial crop protection guides include the PHI for every pesticide x crop combination. The 2022 Crop Production Guides are available as a FREE downloadable PDF for Alberta, Saskatchewan, and Manitoba.

SHARE THIS POST

Provincial insect pest report links

Jennifer Otani
Categories
Week 14

Provincial entomologists provide insect pest updates throughout the growing season so link to their information:

MANITOBA’S Crop Pest Updates for 2022 are up and running! Access a PDF copy of the latest report on their website. July 27, 2022 issue here. Bookmark their Crop Pest Update Index to readily access these reports and also bookmark their insect pest homepage to access fact sheets and more!

SASKATCHEWAN’S Crop Production News for 2022 is up and running! Access the online Issue #5 (URL retrieved July 28, 2022) and find updates linking to information for Beneficial insects, and Managing grasshoppers. Bookmark their insect pest homepage to access important information! Crops Blog Posts are updated through the growing season.

ALBERTA’S Insect Pest Monitoring Network webpage links to insect survey maps, live feed maps, insect trap set-up videos, and more. There is also a Major Crops Insect webpage. The new webpage does not replace the Insect Pest Monitoring Network page. Remember, AAF’s Agri-News occasionally includes insect-related information. Twitter users can connect to #ABBugChat Wednesdays at 10:00 am.
Wheat midge pheromone monitoring update for AB – Cumulative counts arising from weekly data are available on this Live Map.
Cabbage seedpod weevil monitoring update for AB – Cumulative counts arising from weekly data are available on this Live Map.
Bertha armyworm pheromone trap monitoring update for AB – Cumulative counts arising from weekly data are available on this Live Map.

SHARE THIS POST

Previous posts

Jennifer Otani
Categories
Week 14

As the growing season progresses, the various Weekly Update topics move on and off the priority list for in-field scouting but they should be kept at hand to support season-long monitoring. Click to review these earlier 2022 Posts (organized alphabetically):
2021 Risk and forecast maps
Alfalfa weevil – predicted development (Wk06)
Bertha armyworm – predicted development (Wk07)
Cereal leaf beetle – predicted development (Wk06)
Crop protection guides (Wk02)
Cutworms (Wk02)
European corn borer – Canadian standardized assessment 2.0 (Wk02)
Field heroes (Wk08)
Field guides – New webpage to access (Wk02)
Flea beetles (Wk01; IOTW)
iNaturalist.ca (Wk02)
Invasive insect species – Early detection (Wk02)
Scouting charts – canola and flax (Wk03)
Wheat midge – predicted development (Wk12)
Wind trajectory reports (Wk09)

SHARE THIS POST

THE FOREIGN GRAIN BEETLE

Vincent Hervet, Brent Elliott, Cynthia Schock and Jennifer Otani
Categories
Week 14

The foreign grain beetle (Ahasverus advena) is one of the most commonly encountered insect species in farm-stored grain in Canada. Because it often is found in stored grain, it was thought to be a grain pest, but research has shown that the foreign grain beetle is instead chiefly a mould feeder. Its presence in stored grain tells much about the state of the grain.

Because it feeds on mould, the presence of foreign grain beetles in a grain bin is a telltale sign that grain is likely going out of condition somewhere in the bin. For example, if the grain hasn’t been appropriately aerated it could be that a hot spot is forming in the centre or top of the pile, or, if snow has blown into the bin, the mouldy grain may be restricted to the top of the pile. In many instances, when we encounter foreign grain beetles we cannot readily see mouldy grain, but measuring the grain temperature and moisture content at the very centre of the top of the pile (top of the cone) should show that the condition of the grain is beyond that recommended for safe storage (see link below text) and that grain quality has likely started to deteriorate.

Foreign Grain Beetle on a kernel of wheat. Photo: Vincent Hervet, AAFC

To learn more about current storage practices, storage issues, and to understand the main insect issues in stored grains across the Canadian prairies, Dr. Vincent Hervet with Agriculture and Agri-Food Canada (vincent.hervet@agr.gc.ca) is currently surveying insects in farm grain bins across the Prairie Provinces of Canada. Preliminary results collected over the last two years in Manitoba, predominantly from stored wheat, showed grain insects were present in most bins. To our surprise, most of the insects collected were chiefly mould feeders (61 % of all insects collected in 2020 were mould feeders and 99 % of all insects collected in 2021 were mould feeders), and these mould feeders were present in 72 % of the bins sampled. The most commonly collected insect species was by far the foreign grain beetle.

Different reasons can explain these results, such as precipitations during harvest or weather conditions that did not allow for quick drying and cooling of the grain after harvest, but there may also be a lack of awareness of best storage management techniques. Therefore, we need to continue this research over the next few years to obtain meaningful data. To this end, volunteer growers in Alberta, Saskatchewan, and Manitoba are sought to participate in this survey so we can better understand issues in farm-stored grain and how to address them.

HOW YOU CAN HELP: If you wish to participate in this survey, or if you wish to have more details about the survey, please contact Dr. Vincent Hervet (vincent.hervet@agr.gc.ca; 204-915-6918).

Access these valuable resources provided by the Canadian Grain Commission:
• Review or bookmark these Safe Storage Charts.
• Find more information on the Management of Stored Grain.

SHARE THIS POST

SHARE THIS POST