Weekly Update

Jennifer Otani, Ross Weiss and Meghan Vankosky
Categories
Week 7

Week 7 and things are about to get really busy for in-field scouting! Be sure to catch the Insect of the Week – it’s wheat midge! This week find updates to predictive model outputs for grasshoppers, wheat midge, bertha armyworm, cereal leaf beetle, alfalfa weevil, and diamondback moth plus a lot more to help prepare for in-field scouting!

Stay safe and good scouting to you!

Questions or problems accessing the contents of this Weekly Update?  Please contact us so we can connect you to our information. Past “Weekly Updates” can be accessed on our Weekly Update page.

SHARE THIS POST

Weather synopsis

Ross Weiss, Tamara Rounce, David Giffen, Jennifer Otani and Meghan Vankosky
Categories
Week 7

TEMPERATURE: This past week (June 7-13, 2021), weekly temperatures were above normal and rainfall in eastern Saskatchewan and Manitoba were above normal. The warmest temperatures were observed across Manitoba and Saskatchewan (Fig. 1). Across the prairies, the average 30-day (May 15 – June 13) temperature was 1 °C warmer than climate normal values. Warmest temperatures were observed across southern Manitoba (Fig. 2). The 2021 growing season (April 1 – June 13, 2021) has been characterized by near normal temperatures (Fig. 3).

Figure 1. 7-day average temperature (°C) observed across the Canadian prairies for the period of June 7 -13, 2021.
Figure 2. 30-day average temperature (°C) observed across the Canadian prairies for the period of May 15 – June 13, 2021.
Figure 3. Growing season average temperature (°C) observed across the Canadian prairies for the period of April 1 – June 13, 2021.

Growing degree day (GDD) maps for Base 5 ºC and Base 10 ºC (April 1-Jun14, 2021) can be viewed by clicking the hyperlinks. Over the past 7 days (June 10-16, 2021), the lowest temperatures recorded across the Canadian prairies ranged from < -32 to >8 °C while the highest temperatures observed ranged from <19 to >35 °C. Access these maps and more using the AAFC Drought Watch webpage interface.

PRECIPITATION: This week, the highest rainfall amounts were reported across eastern Saskatchewan and most of Manitoba. Minimal rainfall was reported across most of Alberta (Fig. 4). Rainfall amounts for the period of May 15-June 13 (30-day accumulation) were above normal (150% of long-term average values). Rainfall amounts have been above normal for northeastern Alberta, northwestern and southeastern Saskatchewan, and western Manitoba. Well above normal rain was reported for Lloydminster, Regina, and Brandon regions. Below normal rainfall amounts were reported for the Peace River region and southern Alberta (Fig. 5). Average growing season (April 1 – June 13) precipitation was 116% of normal with the greatest precipitation occurring across eastern Saskatchewan, including Regina and an area extending from Brandon to Winnipeg. Below normal rainfall has been reported across western Saskatchewan and southern Alberta (Fig. 6).

Figure 4 . 7-day cumulative rainfall (mm) observed across the Canadian prairies for the period of June 7 -13, 2021.
Figure 5. 30-day cumulative rainfall (mm) observed across the Canadian prairies for the period of May 15 – June 13, 2021
Figure 6. Growing season cumulative rainfall (mm) observed across the Canadian prairies for the period of April 1-June 13, 2021.

The maps above are all produced by Agriculture and Agri-Food Canada. Growers can bookmark the AAFC Current Conditions Maps for the growing season. Historical weather data can be access at the AAFC Drought Watch Historical website, Environment Canada’s Historical Data website, or your provincial weather network.

SHARE THIS POST

Weekly Wind Trajectory Report for June 15

Ross Weiss, Serge Trudel, Jennifer Otani and Meghan Vankosky
Categories
Week 7

Access background information for how and why wind trajectories are monitored in this post.

1. REVERSE TRAJECTORIES (RT)
Similar to last week, this week there were an increasing number of reverse trajectories moving north from the Pacific Northwest (Idaho, Oregon and Washington) (Fig. 1). Though this US region can be a source of diamondback moths (DBM), the ECCC models predict air movement, not actual occurrence of diamondback moths. Fields (and DBM traps) should be monitored for DBM adults and larvae.

Figure 1. The average number (based on a 5 day running average) of reverse trajectories that have crossed the prairies for the period of May 15 – June 15, 2021.

a. Pacific Northwest (Idaho, Oregon, Washington) – This week (June 11-15, 2021) there were 109 trajectories (versus 106 last week) that crossed Alberta, Manitoba and Saskatchewan (Fig. 2).

Figure 2. Total number of dates with reverse trajectories originating over the Pacific Northwest (Idaho, Oregon, and Washington) and have crossed the prairies between March 24 and June 15, 2021.

b. Mexico and southwest USA (Texas, California) – Compared to previous years, there has been a noticeable increase in number of trajectories from the southern US. The majority of these trajectories have crossed Manitoba and eastern Saskatchewan (Fig. 3). This week (June 11-15, 2021) there have been 11 trajectories (10 last week) that originated in Mexico or the southwest USA that have crossed the prairies.

Figure 3. The total number of dates with reverse trajectories originating over Mexico, California and Texas and have crossed the prairies between March 24 and June 15, 2021.

c. Oklahoma and Texas – The majority of these trajectories passed over Manitoba and eastern Saskatchewan (Fig. 4). This week (June 11-15, 2021) there were 18 trajectories (13 last week) originating in Oklahoma or Texas that passed over the prairies.

Figure 4. The total number of dates with reverse trajectories originating over Oklahoma and Texas and have crossed the prairies between March 24 and June 15, 2021.

d. Kansas and Nebraska – This week (June 11-15, 2021) there were 20 trajectories (19 last week) that originated in Kansas or Nebraska that passed over the prairies (Fig. 5).

Figure 5. The total number of dates with reverse trajectories originating over Kansas and Nebraska and have crossed the prairies between March 24 and June 15, 2021.

2. FORWARD TRAJECTORIES (FT)
a. This week there was a decrease in the number of forward trajectories predicted to cross the prairies (Fig. 6). The dates on the graph report when the trajectories originated in the USA (blue bars). These trajectories generally require 3-5 days to enter the prairies (red line). The data suggests that there will be increased potential for introduction of DBM to the prairies.

Figure 6. The average number (based on a 5 day running average) of forward trajectories that were predicted to cross the prairies for the period of May 15-June 15, 2021.
SHARE THIS POST

Predicted diamondback moth development

Ross Weiss, Tamara Rounce, David Giffen, John Gavloski, James Tansey, Carter Peru, Shelley Barkley, Jennifer Otani and Meghan Vankosky
Categories
Week 7

Diamondback moths (DBM; Plutella xylostella) are a migratory invasive species. Each spring adult populations migrate northward to the Canadian prairies on wind currents from infested regions in the southern or western U.S.A. Upon arrival to the prairies, migrant diamondback moths begin to reproduce and this results in subsequent non-migrant populations that may have three or four generations during the growing season. Model simulations to June 13, 2021 (using a biofix date of May 15, 2021), indicate that the first generation of non-migrant adults are currently emerging across the Canadian prairies (Fig. 1).

Fig. 1 Predicted number of non-migrant generations of diamondback moth (Plutella xylostella) expected to have occurred across the Canadian prairies as of June 13, 2021.

So far, Manitoba, Saskatchewan, Alberta and the BC Peace are all reporting relatively low numbers of intercepted DBM in pheromone traps (read provincial insect pest report links) despite the fact that favourable wind trajectories have passed over the Canadian prairies from southern regions of North America (review wind trajectory reports for 2021). Even so, once DBM are present in an area, it is important to monitor individual canola fields for larvaeWarm growing conditions can quickly translate into multiple generations in a very short time so use the following photos to help identify larvae (Fig. 2), pupae (Fig. 3), or adults (Fig. 4)!

Monitoring: Remove plants in an area measuring 0.1 m² (about 12″ square), beat them onto a clean surface and count the number of larvae (Fig. 2) dislodged from the plant. Repeat this procedure at least in five locations in the field to get an accurate count.

Figure 2. Diamondback larva measuring ~8mm long.
Note brown head capsule and forked appearance of prolegs on posterior.

The economic threshold for diamondback moth in canola at the advanced pod stage is 20 to 30 larvae/ 0.1  (approximately 2-3 larvae per plant).  Economic thresholds for canola or mustard in the early flowering stage are not available. However, insecticide applications are likely required at larval densities of 10 to 15 larvae/ 0.1 m² (approximately 1-2 larvae per plant).

This image has an empty alt attribute; its file name is DBM_Pupa_AAFC-1.jpg
Figure 3. Diamondback moth pupa within silken cocoon.
This image has an empty alt attribute; its file name is DBM_adult_AAFC-1.png
Figure 4. Diamondback moth.

Biological and monitoring information for DBM (including tips for scouting and economic thresholds) is posted by Manitoba Agriculture and Resource DevelopmentSaskatchewan Agriculture, and the Prairie Pest Monitoring Network.  Also, refer to the diamondback moth pages within the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” (accessible in either English-enhanced or French-enhanced versions).

SHARE THIS POST

Predicted grasshopper development

Ross Weiss, Tamara Rounce, David Giffen, Owen Olfert, Jennifer Otani and Meghan Vankosky
Categories
Week 7

Model simulations were used to estimate grasshopper (Melanoplus sanguinipes) development as of June 13, 2021. Average development of eggs is 90 % and well ahead of the long-term average of 80 %. As of June 13, the hatch is predicted to be underway across most of the prairies with a prairie average of 45 % (versus 26 % last week). Hatch rates were greater than 75 % across southern Manitoba, Saskatchewan and Alberta. Development in central and Peace River regions of Alberta has been significantly slower than the rest of the prairies (Fig. 1).

Figure 1. Predicted grasshopper (Melanoplus sanguinipes) hatch (%) across the Canadian prairies as of June 13, 2021.

Development of grasshopper nymphs, based on average instar, is greatest across Manitoba (Fig. 2). Above normal temperatures have resulted in the rapid development of grasshopper populations across Manitoba and Saskatchewan. Grasshopper populations south of Winnipeg are predicted to be mostly in the 3rd and 4th instar stages. Nymph development, as of June 13, 2021, is greater than long-term average values across most of the prairies (Fig. 3).

Figure 2 Predicted grasshopper (Melanoplus sanguinipes) development, presented as the average instar, across the Canadian prairies as of June 13, 2021.
Fig. 3. Long-term average predicted grasshopper (Melanoplus sanguinipes) development, presented as the average instar, across the Canadian prairies as of June 15 based on climate normals data.

The model was projected to June 29 to determine potential development at Saskatoon and Winnipeg over the next two weeks. Results suggest that by June 29, Saskatoon populations will primarily be in the third and fourth instar with first appearance of fifth instar nymphs (Fig. 4) whereas near Winnipeg development is predicted to be faster, with populations being mostly in the fourth and fifth instars (Fig. 5). Producers are advised to monitor roadsides and field margins to assess the development and densities of local grasshopper populations.

Figure 4. Predicted development, presented as the average instar, of Melanoplus sanguinipes populations near Saskatoon, Saskatchewan as of June 13, 2021 (projected to June 29, 2021).
Figure 5. Predicted development, presented as the average instar, of Melanoplus sanguinipes populations near Winnipeg, Manitoba as of June 13, 2021 (projected to June 29, 2021).

Grasshopper Scouting Steps:
● Measure off a distance of 50 m on the level road surface and mark both starting and finishing points using markers or specific posts on the field margin.
● Start at one end in either the field or the roadside and walk toward the other end of the 50 m, making some disturbance with your feet to encourage any grasshoppers to jump.
● Grasshoppers that jump/fly through the field of view within a one-meter width in front of the observer are counted.
● A meter stick can be carried as a visual tool to give perspective for a one-meter width. However, after a few stops, one can often visualize the necessary width and a meter stick may not be required. Also, a hand-held counter can be useful in counting while the observer counts off the required distance.
● At the endpoint, the total number of grasshoppers is divided by 50 to give an average per meter. For 100 m, repeat this procedure.
● Compare counts to the following damage levels associated with pest species of grasshoppers:
0-2 per m² – None to very light damage
2-4 per m² – Very light damage
4-8 per m² – Light damage
8-12 per m² – Action threshold in cereals and canola
12-24 per m² – Severe damage
24 per m² – Very severe damage
For lentils at flowering and pod stages, >2 per m² will cause yield loss.
For flax at boll stages, >2 per m² will cause yield loss.

Biological and monitoring information (including tips for scouting and economic thresholds) related to grasshoppers in field crops is posted by Manitoba Agriculture and Resource DevelopmentSaskatchewan AgricultureAlberta Agriculture and Forestry, the BC Ministry of Agriculture, and the Prairie Pest Monitoring Network.  Also, refer to the grasshopper pages within the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” (accessible in either English-enhanced or French-enhanced versions).

SHARE THIS POST

Predicted bertha armyworm development

Ross Weiss, Tamara Rounce, David Giffen, Owen Olfert, Jennifer Otani and Meghan Vankosky
Categories
Week 7

Model simulations to June 13, 2021, indicate that bertha armyworm (BAW) (Mamestra configurata) pupal development is greater than 75% (Fig. 1). Populations are predominantly in the pupal stage (Fig. 2).

Figure 1. Predicted bertha armyworm (Mamestra configurata) pupal development (%) across the Canadian prairies as of June 13, 2021.
Figure 2. Predicted percent of bertha armyworm (Mamestra configurata) population that is in the pupal stage (% of population) across the Canadian prairies as of June 13, 2021.

Model simulations indicate that BAW adult emergence has begun across southern areas of Manitoba and Saskatchewan (Fig. 3). Based on pupal development, adult emergence should occur across most of the prairies over the next few days.

Figure 3. Predicted percent of bertha armyworm (Mamestra configurata) population that is in the adult stage (% of population) across the Canadian prairies as of June 13, 2021.

Model projections to June 30 predict that development near Winnipeg is more advanced than at Lacombe (Figs. 4 and 5). The model predicts that oviposition has begun near Winnipeg and that egg hatch will begin next week in fields.

Figure 4. Predicted development of bertha armyworm (Mamestra configurata) populations near Winnipeg, Manitoba as of June 13, 2021 (projected to June 29, 2021).
Figure 5. Predicted development of bertha armyworm (Mamestra configurata) populations near Lacombe, Alberta as of June 13, 2021 (projected to June 29, 2021).

Refer to the PPMN Bertha armyworm monitoring protocol for help when performing in-field scouting.  Use the images below (Fig. 6) to learn to identify the various stages.  Review the 2019 Insect of the Week which featured bertha armyworm and its doppelganger, the clover cutworm! 

This image has an empty alt attribute; its file name is 2019_PPMN-Protocol_BAW_LifeStages_Williams.png
Figure 6. The egg stage (A), larval stage (B), pupal stage (C), and adult stage (D) of bertha armyworm. Photos: Jonathon Williams (AAFC-Saskatoon).

Biological and monitoring information related to bertha armyworm in field crops is posted by the provinces of ManitobaSaskatchewanAlberta and the Prairie Pest Monitoring Network. Also, refer to the bertha armyworm pages within the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” which is a free downloadable document as both an English-enhanced or French-enhanced version.

SHARE THIS POST

Predicted cereal leaf beetle development

Ross Weiss, Tamara Rounce, David Giffen, Owen Olfert, Jennifer Otani and Meghan Vankosky
Categories
Week 7

The cereal leaf beetle (CLB) (Oulema melanopus) model predicts that larval development varies across the prairies. The graph predicts development at Lethbridge (Fig. 1). The simulation indicates that populations in southern Alberta should be in the second and third instar. The appearance of pupae is expected to occur by the end of the month across southern Alberta.

Figure 1. Predicted status of cereal leaf beetle (Oulema melanopus) populations near Lethbridge, Alberta as of June 13, 2021 (projected to June 29, 2021).

Cereal leaf beetle scouting

Give priority to the following factors when selecting monitoring sites:
□ Choose fields and sections of the fields with past or present damage symptoms.
□ Choose fields that are well irrigated (leaves are dark green in color), including young, lush crops. Areas of a field that are under stress and not as lush (yellow) are less likely to support CLB.
□ Monitor fields located along riparian corridors, roads and railroads.
□ Survey field areas that are close to brush cover or weeds, easy to access, or are nearby sheltered areas such as hedge rows, forest edges, fence lines, etc.

Focus site selection on the following host plant priorities:
□ First – winter wheat. If no winter wheat is present then;
□ Second – other cereal crops (barley, wheat, oats, and rye). If no cereal crops are present then;
□ Third – hay crops. If no hay crops or cereal crops are present then;
□ Fourth – ditches and water corridors

Sweep-net Sampling for Adults and Larvae:
● A sweep is defined as a one pass (from left to right, executing a full 180 degrees) through the upper foliage of the crop using a 37.5 cm diameter sweep-net.
● A sample is defined as 100 sweeps taken at a moderate walking pace collected 4-5 meters inside the border of a field.
● At each site, four samples should be collected, totaling 400 sweeps per site. The contents of each sample should be visually inspected for life stages of CLB and all suspect specimens should be retained for identification.
● Because the CLB larvae are covered in a sticky secretion, they are often covered in debris and are very difficult to see within a sweep-net sample.
● To help determine the presence of CLB, place the contents of the sweep net into a large plastic bag for observation.

Visual Inspection: Both the adults and larvae severely damage plants by chewing out long strips of tissue between the veins of leaves (Fig. 1), leaving only a thin membrane. When damage is extensive, leaves turn whitish.

Lifecycle and Damage:

Larva: The larvae hatch in about 5 days and feed for about 3 weeks, passing through 4 growth stages (instars). The head and legs are brownish-black; the body is yellowish. Larvae are usually covered with a secretion of mucus and fecal material, giving them a shiny black, wet appearance (Fig. 2).  When the larva completes its growth, it drops to the ground and pupates in the soil. 

Figure 2.  Larval stage of Oulema melanopus with characteristic feeding damage visible on leaf (Photo: M. Dolinski).

Pupa: Pupal colour varies from a bright yellow when it is first formed, to the colour of the adult just before emergence. The pupal stage lasts 2 – 3 weeks. Adult beetles emerge and feed for a couple of weeks before seeking overwintering sites. There is one generation per year.

Adult: Adult cereal leaf beetles (CLB) have shiny bluish-black wing-covers (Fig. 3). The thorax and legs are light orange-brown. Females (4.9 to 5.5 mm) are slightly larger than males (4.4 to 5 mm). They emerge in the spring once temperatures reach 10-15 ºC and the adults are active for about 6 weeks. They usually begin feeding on grasses, then move into winter cereals and later into spring cereals. Adult beetles overwinter in and along the margins of grain fields in protected places such as in straw stubble, under crop and leaf litter, and in the crevices of tree bark. They favour sites adjacent to shelter belts, deciduous and conifer forests.

Figure 3. Adult Oulema melanopus measure 4.4-5.5 mm long (Photo: M. Dolinski).

Fact sheets for CLB are published by the province of Alberta and available from the Prairie Pest Monitoring Network. Also, access the Oulema melanopus page from the “Field crop and forage pests and their natural enemies in western Canada – Identification and management field guide” (2018; accessible in either English-enhanced or French-enhanced versions).

SHARE THIS POST

Predicted alfalfa weevil development

Jennifer Otani
Categories
Week 7

Model simulations for alfalfa weevil (AAW) (Hypera postica) predict, as of June 13, that alfalfa weevil populations should be in the third larval instar (Fig. 1). Fourth instar larvae are predicted to occur across southeastern Saskatchewan and southern Manitoba.

Figure 1. Predicted percent of Hypera postica (alfalfa weevil) population in the third instar stage as of June 13, 2021.

The following graphs indicate that development is more advanced near Brandon (Fig. 2) than Swift Current (Fig. 3). Simulation runs indicate that by June 29, southern Manitoba populations will be in pupal stage whereas Swift Current populations are predicted to be in the fourth instar and pupal stages.

Figure 2. Predicted status of alfalfa weevil (Hypera postica) development for populations near Brandon, Manitoba as of June 13, 2021 (projected to June 29, 2021).
Figure 3. Predicted status of alfalfa weevil (Hypera postica) development for populations near Swift Current, Saskatchewan as of June 13, 2021 (projected to June 29, 2021).

The larval stage of this weevil feeds on alfalfa leaves in a manner that characterizes the pest as a “skeletonizer” (Fig. 4).  The green larva features a dorsal white line down the length of its body, has a dark brown head capsule, and will grow to 9 mm long.  

Figure 4. Developmental stages of the alfalfa weevil (Hypera postica). Composite image: J. Soroka (AAFC-Saskatoon).

Alfalfa growers are encouraged to check the Alfalfa Weevil Fact Sheet prepared by Dr. Julie Soroka (AAFC-Saskatoon).  Additional information can be accessed by reviewing the Alfalfa Weevil Page extracted from the “Field crop and forage pests and their natural enemies in western Canada – Identification and management field guide” (2018; accessible in either English-enhanced or French-enhanced versions).

SHARE THIS POST

Predicted wheat midge development

Ross Weiss, Tamara Rounce, David Giffen, Owen Olfert, Jennifer Otani and Meghan Vankosky
Categories
Week 7

Wheat midge (Sitodiplosis mosellana) overwinter as larval cocoons in the soil. Soil moisture conditions in May and June can have significant impacts on wheat midge emergence. Adequate rainfall promotes termination of diapause and movement of larvae to the soil surface where pupation occurs. Insufficient rainfall in May and June can result in delayed movement of larvae to the soil surface. Elliott et al. (2009) reported that wheat midge emergence was delayed or erratic if rainfall did not exceed 20-30 mm during May. Olfert et al. (2016) ran model simulations to demonstrate how rainfall impacts wheat midge population density. The Olfert et al. (2020) model indicated that dry conditions may result in:
a. Delayed adult emergence and oviposition
b. Reduced numbers of adults and eggs

Based on averages across the three provinces, 56% of the wheat midge population is predicted to be in the larval cocoon stage (in the soil) and 44% of the larvae have moved to the soil surface. As a result of suitable temperature and rainfall, wheat midge model simulations indicate that more than 70% of the larval population has moved to the soil surface in central Alberta and northwestern and southeastern Saskatchewan (Fig. 1). Dryer conditions in Manitoba and the Peace River region continue to delay the movement of larvae to the soil surface.

Figure 1. Percent of the wheat midge (Sitodiplosis mosellana) larval population that has moved to the soil surface across western Canada, based on weather conditions up to June 13, 2021.

Information related to wheat midge biology and monitoring can be accessed by linking to your provincial fact sheet (Saskatchewan Agriculture or Alberta Agriculture & Forestry).  A review of wheat midge on the Canadian prairies was published by Elliott, Olfert, and Hartley in 2011.  

Alberta Agriculture and Forestry has a YouTube video describing in-field monitoring for wheat midge.  

More information about wheat midge can be found by accessing the pages from the new “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Field Guide”.  View ONLY the Wheat midge pages but remember the guide is available as a free downloadable document as both an English-enhanced or French-enhanced version.

SHARE THIS POST

Cereal Aphid Manager APP

Tyler Wist, Erl Svendsen and Jennifer Otani
Categories
Week 7

Aphids can cause significant damage to fields and increase crop losses but low densities in a grain field sometimes have little economic impact on production. This is especially true if the aphid’s natural enemies (beneficial insects) are present in the field because they can keep the aphids under control.

The Cereal Aphid Manager is an easy-to-use mobile app that helps farmers and crop advisors control aphid populations in wheat, barley, oat or rye. It is based on Dr. Tyler Wist’s (AAFC-Saskatoon) Dynamic Action Threshold model. The model treats the grain field as an ecosystem and takes into account many complex biological interactions including:

  • the number of aphids observed and how quickly they reproduce
  • the number of different natural enemies of aphids in the field and how many aphids they eat or parasitize per day
  • the lifecycles of aphids and their enemies taking into account developmental stages, egg laying behaviour, population growth rate, lifespan, etc.

Frequent in-field scouting, supported by the app’s dynamic threshold, allows growers to weigh the above factors and the app predicts what the aphid population will be in seven days and the best time to apply insecticide based on economic thresholds.

To learn more and to download the app (Android or iOS), go to AAFC’s CAM webpage

SHARE THIS POST

Nationwide monitoring pilot project for European corn borer

Meghan Vankosky, James Tansey, John Gavloski, Tracey Baute and Jennifer Otani
Categories
Week 7

The European corn borer (ECB; Ostrinia nubilalis), has been an important pest of corn and other crops in eastern Canada for nearly a century now but is also known to be a sporadic pest in western Canada. Despite its name, ECB is actually a generalist feeder, having a wide range of hosts. With so many new emerging crops being grown in Canada that are also hosts for ECB (eg. hemp, cannabis, quinoa, hops, millet and others), there is no better time to look at this pest across the Canadian agricultural landscape.

To monitor for ECB nationwide, the Surveillance Working Group of the Canadian Plant Health Council has developed a harmonized monitoring protocol for European corn borer in both English and French. The project aims to generate real-time reporting and annual maps – access a full description of the project and list of key contact persons. The protocol can be used to report ECB eggs, larvae or damage in any host crop across Canada. This harmonized protocol has been designed to complement protocols already in use to make management decisions in order to generate data to compare ECB presence across all of Canada and across host crops.

When scouting corn, quinoa, hemp, millet, potatoes, apples, or other crops susceptible to ECB, the Surveillance Working Group of the Canadian Plant Health Council encourages the use of the harmonized monitoring protocol and reporting of the data from fields or research plots using the free Survey123 app (available for both desktop and mobile devices):
• Early to Mid-Season ECB Survey (Before July) – https://arcg.is/0qCCHH (applicable for use in eastern Canada).
• Later Season ECB Survey (July to Pre-Harvest) – https://arcg.is/fSODf (applicable for use in both eastern AND western Canada).

SHARE THIS POST

Field heroes

Jennifer Otani
Categories
Week 7

The Field Heroes campaign continues to raise awareness of the role of beneficial insects in western Canadian crops.

Two NEW Field Heroes resources for 2021 include:

  1. Real Agriculture went live in 2021 with Season 2 of the Pest and Predators podcast series!
    NEW – Episode 11 – Free farm labour (June 15, 2021)
    • Episode 10 – Good bugs relocate for work (June 1, 2021)
    • Episode 9 – Secret agents in the stubble (May 18, 2021)
    • Episode 8 – Good vs pea leaf weEVIL (May 4, 2021)
    • Episode 7 – Powerful parasitoids: Better than fiction (April 20, 2021)
    • Recap of SEASON 1: Episode 1 – Do you know your field heroes? Episode 2 – An inside look at the Prairie Pest Monitoring Network. Episode 3 – How much can one wasp save you? Episode 4 – Eat and be eaten — grasshoppers as pests and food Episode 5 – Killer wasp has only one target — wheat stem sawfly Episode 6 – Plentiful parasitoids
  2. The NEW Pests and Predators Field Guide is filled with helpful images for quick insect identification and plenty of tips to manage the pests AND natural enemies in your fields. Claim your free copy at http://fieldheroes.ca/fieldguide/ or download for free to arm your in-field scouting efforts!

Access ALL the Field Heroes links here and be sure to follow @FieldHeroes!

SHARE THIS POST

Monarch migration

Jennifer Otani
Categories
Week 7

Track the migration of the Monarch butterflies as they move north by checking the 2021 Monarch Migration Map!  A screenshot of the map has been placed below as an example (retrieved 17Jun2021) but follow the hyperlink to check the interactive map.  They’ve reached Saskatchewan and southern Alberta!

Access this Post to help you differentiate between Monarchs and Painted Lady Butterflies!

Visit the Journey North website to learn more about migration events in North America and visit their monarch butterfly website for more information related to this amazing insect. 

SHARE THIS POST

Provincial insect pest report links

Jennifer Otani, James Tansey, Carter Peru, Shelley Barkley and John Gavloski
Categories
Week 7

Provincial entomologists provide insect pest updates throughout the growing season so link to their information:

MANITOBA’S Crop Pest Updates for 2021 are now available – access the June 16, 2021 report here. Be sure to bookmark their Crop Pest Update Index to readily access these reports! Also, bookmark their insect pest homepage to access fact sheets and more!
Bertha armyworm pheromone trap monitoring update for MB – Cumulative counts arising from weekly data will soon be available.
Diamondback moth pheromone trap monitoring update for MB – Refer to the summary updated twice a week. So far, only 59 traps have intercepted moths and the highest cumulative count is 135 moths near The Pas. Access the summary (as of June 8, 2021).

SASKATCHEWAN’S Crop Production News have begun to roll out for 2021 and are accessible now! Access Issue #1 online which includes a crop protection laboratory update including how to submit samples, information on curculios on fruit crops, and information for scouting flea beetles and assessing damage. Be sure to bookmark their insect pest homepage to access important information!
Bertha armyworm pheromone trap monitoring update for SK – Cumulative counts arising from weekly data will soon be available.
Diamondback moth pheromone trap monitoring update for SK – follow this link to find current DBM counts. At this point, extremely low numbers have been intercepted but monitoring continues. Province-wide, <45 moths have been intercepted so far (2021Jun10 Carter, pers. comm.).

ALBERTA’S Insect Pest Monitoring Network webpage links to insect survey maps, live feed maps, and insect trap set-up videos and more. There is also a Major Crops Insect webpage. The new webpage does not replace the Insect Pest Monitoring Network page. Remember, AAF’s Agri-News occasionally includes insect-related information or Twitter users can connect to #ABBugChat Wednesdays at 10:00 am.
Bertha armyworm pheromone trap monitoring update for AB – Cumulative counts arising from weekly data are starting to roll in so refer to the Live Map as data becomes available.
Diamondback moth pheromone trap monitoring update for AB – Refer to the Live Map which still reports extremely low numbers of moths intercepted so far (<45 province-wide as of 17Jun2021).
Cutworm reporting tool – Refer to the Live Map which still reports only four sites with cutworms (as of 17Jun2021).

SHARE THIS POST

Crop report links

Jennifer Otani
Categories
Week 7

Click the provincial name below to link to online crop reports produced by:
Manitoba Agriculture and Resource Development (subscribe to receive OR access a PDF copy of the June 15 2021 report).
Saskatchewan Agriculture (or access a PDF copy of the June 8-14, 2021 report).
Alberta Agriculture and Forestry (or access a PDF copy of the June 8, 2021 report).

The following crop reports are also available:
• The United States Department of Agriculture (USDA) produces a Crop Progress Report (access a PDF copy of the June 14, 2021 edition).
• The USDA’s Weekly Weather and Crop Bulletin (access a PDF copy of the Jun 15, 2021 edition).

SHARE THIS POST

Previous posts

Jennifer Otani
Categories
Week 7

As the growing season progresses, the various Weekly Update topics move on and off the priority list for in-field scouting but they should be kept at hand to support season-long monitoring. Click to review these earlier 2021 Posts (organized alphabetically):
2020-2021 Risk and forecast maps
Crop protection guides (Wk03)
Cutworms (Wk02)
Flea beetles (Wk02)
Flea beetles – predicted geographic distribution and abundance (Wk04)
Ladybird beetles (Wk03)
Pea leaf weevil (Wk03)
Scouting charts – canola and flax (Wk03)
Slugs and their parasites (Wk04)
Weather radar mapping interface (Wk06))
Wind trajectories for monitoring insect movement (Wk02)
Wireworms (Wk02)

SHARE THIS POST

WHEAT MIDGE: TINY PESTS CAN CAUSE BIG PROBLEMS

Erl Svendsen, Jennifer Otani and Finch Van Baal
Categories
Week 7
Wheat midge larvae (AAFC)

This week’s Insect of the Week is the wheat midge. Found around the globe where wheat is grown, these small insects can pose a big problem for producers. Sizeable crop damage has been attributed to wheat midge populations across the Prairies, where it feeds on spring, winter and durum wheat, as well as triticale and spring rye.

Crop damage occurs when the wheat midge is in its larval stage. Once hatched, the wheat midge larvae eat developing wheat kernels, causing shrivelled, misshapen, cracked or scared kernels. This damage isn’t apparent at a glance and developing seeds must be inspected within the glume. Losing wheat kernels will lower crop yield, while damaged kernels will impact the grade given to the harvested wheat. The Canadian Grain Commission allows midge damage between two and five percent prior to impacting the assigned grade.

Wheat midge adult (AAFC)

Adult wheat midges are delicate orange flies that grow to 2–3 mm long, with large black eyes and long legs and antennae in relation to their otherwise small size.  Mature larvae grow to 2–3 mm long. Young larvae begin as translucent white maggots and turn bright orange during the maturation process.

Biological and monitoring information related to the bertha armyworm in field crops can be found on our Monitoring page as well as on provincial Agriculture Ministry pages (ManitobaSaskatchewan and Alberta). For more information, visit the wheat midge page in the Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and Management field guide. (en français : Guide d’identification des ravageurs des grandes cultures et des cultures fourragères et de leurs ennemis naturels et mesures de lutte applicables à l’Ouest canadien).

SHARE THIS POST

SHARE THIS POST