Wheat head armyworm

Wheat head armyworm (Lepidoptera: Noctuidae): Dargida diffusa (Walker, 1856) feeds on several grassy-type species including wheat, rye, oats, barley, wild oats, native and forage grasses (although timothy is preferred). Wheat head armyworm overwinter within earthen cells as pupae. Each growing season, there are two generations of adults produced. This means both a spring and summer larval generation occur, however, the first generation can cause damage early in the growing season in wheat and some grasses (Fig. 1) although infestations are very sporadic and rarely reach densities requiring control.

Figure 1. Wheat head armyworm larva (Noctuidae: Dargida diffusa) and frass (larval poop) plus shed larval head capsule where developing kernel formed but was consumed. Photo kindly shared by: B. DeSmet, Dirt Road Agronomy.

Adult moths are 30-38 mm in wing span, are yellowish-brown, but have a chocolate-brown stripe running down the length of each forewing. Larvae have a pale brown head capsule, grow to ~25 mm long, and are bright green or tan with lateral white stripes that help camouflage them on awns (Fig. 2). The previous alternate scientific name for this species was Faronta diffusa. Wheat head armyworm are surprisingly difficult to spot in situ and are sometimes initially detected in sweep-nets (Fig. 3).

Figure 2. Examples of three colour morphs of wheat head armyworm (Noctuidae: Dargida diffusa) on cereals growing in the Peace River region in 2024; note consistent stripe patterning but larval body colour can range from bright green to tan. Photos kindly shared by: B. DeSmet, Dirt Road Agronomy.
Figure 3. Green and tan colour morphs of wheat head armyworm (Noctuidae: Dargida diffusa) retrieved in sweep-net sample on August 10, 2020, in wheat growing near Magrath AB. Photo kindly shared by: A. Voss, @Voss_Ag

Infestations are very sporadic. There is no nominal or economic threshold for this species in any of the field crop species listed above. Beneficial insects like the parasitoid wasps within the genus Cotesia will attack wheat head armyworm larvae and, shortly after erupting from the larval host, will form clusters of white cocoons (Fig. 4) that eventually yield new parasitoid wasps which subsequently seek out and attack other armyworms.

Figure 4. Cotesia cocoons spun on wheat awns that presumably erupted from immobile larva of wheat head armyworm (Noctuidae: Dargida diffusa) that has numerous lateral exit wounds. Photo taken August 10, 2020, near Magrath AB and kindly shared by:A. Voss, @Voss_Ag

Distribution records for D. diffusa can be reviewed on the Butterflies of North America website although these records would greatly benefit with sightings in western Canada because the species is established in Alberta (central and in the south east of the Peace River region), in Saskatchewan, and Manitoba.

Biological and monitoring information for this insect pest species is accessible as a wheat head armyworm page within the “Field Crop and Forage Pests and their Natural Enemies in Western Canada: Identification and management field guide” (2018). The entire guide is accessible as a free downloadable PDF in either English or French on our Field Guides page.

European Skipper

The European skipper (Hesperiidae: Thymelicus lineola) is a diurnal, bright orange butterfly (Fig. 1). The predominantly green defoliating larvae can cause economic levels of damage in timothy. The larvae also feed on other species of grasses and winter wheat.

Figure 1. European skipper (Thymelicus lineola) adults on timothy seed seeds. Photo: S. Dufton, AAFC-Beaverlodge.

There is one generation per year of European skipper but butterfly oviposition or egg laying largely dictates where damage occurs the following summer. Host plants include timothy (Phleum pretense), cocksfoot (Dactylis glomerata), couch or quack grass (Agrophyron repens), perennial ryegrass (Lolium perenne), meadow fescue (Festuca pratensis), orchardgrass (Dactylis glomerata). 

Early in July, butterflies feed on nectar, mate, and lay eggs. Females lay vertical rows or “strings” of groups of ~30 eggs on the inside of grass leaf sheaths, seed heads or on the stem of a host plant. By late July, larvae develop within the eggs yet they remain safely enclosed to overwinter inside the egg shell. Eggs can be transferred in both hay and seed as seed cleaning will not remove all eggs. Early the following May, the overwintered larvae emerge from the shell, crawling up growing grass blades to feed. Five larval instar stages cause damage by defoliation of the upper leaves of timothy.

Larvae are leaf-tyers that spin and attach silk ties across the outer edges of leaves to pull them together (Figs. 2-5). The silk ties hold the leaf in a tight furl enclosing the larva within a leafy tube then it moves up and down the tube to feed. The tying behaviour and camouflaged green body (marked longitudinally with two white lines) make larvae hard to locate when scouting.  Even larger larvae with their brown head capsules are surprisingly difficult to locate because the larva will lie lengthwise, along the base of the leaf fold yet the larva remains very still until touched. When high densities of European skipper larvae are present, leaf tying goes out the window and larvae feed in more exposed areas, often amidst rapidly disappearing foliage.

Adult wingspans range from 19-26 mm but they have bright brassy orange wings with narrow black borders and hindwing undersides that are pale orange and greyish. Nectar sources for adults include orange hawkweed, thistles, oxeye daisy, fleabane, white clover, red clover, common milkweed.The typical flight season extends from early June to mid-July but will vary regionally with southern parts of the Canadian prairies starting earlier than more northern regions.

Access the Provincial Insect Pest Report for Wk09 for updates for this economic insect pest.

Cultural control strategies for European skipper include separating timothy from nectar sources to avoid attracting adults which will mate then oviposit in the same field.  Another strategy is the removal of cut grass or bales. 

In terms of chemical control, an action threshold of six or more larvae per 30 cm x 30 cm area is recommended to mitigate losses but emphasis should be placed on scouting and managing early instar larvae. If the need arises, chemical control in timothy involves using a higher water volume (e.g., 300 L H2O/ha) to adequately cover the thicker canopy.

Figure 2. Early instar larva feeding along edge of timothy leaf. Photo: A. Jorgensen, AAFC-Beaverlodge.
Figure 3. Larva resting in fold of timothy leaf formed by silken tie. Photo: K. Pivnick. AAFC-Saskatoon.
Figure 4. Larval feeding damage and silken ties on timothy leaf. Photo: K. Pivnick, AAFC-Saskatoon).
Figure 5. In situ camouflaged larvae and feeding damage in timothy. Photo: S. Barkley.

The European skipper was introduced to North America at least a century ago and has moved west and north in its distribution across western Canada even though its area of origin is recognized as Eurasia and northwestern Africa. The initial report of European skipper in Canada is from 1910 and cites it being imported on contaminated timothy seed near London, Ontario. 

Distribution records for T. lineola can be reviewed on the Butterflies of North America website. In western Canada, T. lineola established in parts of Saskatchewan by 2006. In 2008, butterflies were collected near Valleyview, Alberta (Otani, pers.comm.), and in 2015 larvae were observed feeding in the flag leaves of winter wheat near Mayerthorpe, Alberta (2015 Meers, pers. comm.).  Specimens confirmed as T. lineola were collected in 2016 near Valleyview, Donnelly, and High Prairie, Alberta (2017 Otani and Schmidt, pers. comm.) with additional specimens confirmed from Baldonnel and Clayhurst, British Columbia in 2021 (2021 Otani and Schmidt, pers. comm.).

The European skipper was the Insect of the Week in 2022 (Wk10).

European Skipper

The European skipper (Hesperiidae: Thymelicus lineola) is a diurnal, bright orange butterfly (Fig. 1). The predominantly green defoliating larvae can cause economic levels of damage in timothy. The larvae also feed on other species of grasses and winter wheat.

Figure 1. European skipper (Thymelicus lineola) adults on timothy seed seeds. Photo: S. Dufton, AAFC-Beaverlodge.

There is one generation per year of European skipper but butterfly oviposition or egg laying largely dictates where damage occurs the following summer. Host plants include timothy (Phleum pretense), cocksfoot (Dactylis glomerata), couch or quack grass (Agrophyron repens), perennial ryegrass (Lolium perenne), meadow fescue (Festuca pratensis), orchardgrass (Dactylis glomerata). 

Early in July, butterflies feed on nectar, mate, and lay eggs. Females lay vertical rows or “strings” of groups of ~30 eggs on the inside of grass leaf sheaths, seed heads or on the stem of a host plant. By late July, larvae develop within the eggs yet they remain safely enclosed to overwinter inside the egg shell. Eggs can be transferred in both hay and seed as seed cleaning will not remove all eggs. Early the following May, the overwintered larvae emerge from the shell, crawling up growing grass blades to feed. Five larval instar stages cause damage by defoliation of the upper leaves of timothy.

Larvae are leaf-tyers that spin and attach silk ties across the outer edges of leaves to pull them together (Figs. 2-5). The silk ties hold the leaf in a tight furl enclosing the larva within a leafy tube then it moves up and down the tube to feed. The tying behaviour and camouflaged green body (marked longitudinally with two white lines) make larvae hard to locate when scouting.  Even larger larvae with their brown head capsules are surprisingly difficult to locate because the larva will lie lengthwise, along the base of the leaf fold yet the larva remains very still until touched. When high densities of European skipper larvae are present, leaf tying goes out the window and larvae feed in more exposed areas, often amidst rapidly disappearing foliage.

Adult wingspans range from 19-26 mm but they have bright brassy orange wings with narrow black borders and hindwing undersides that are pale orange and greyish. Nectar sources for adults include orange hawkweed, thistles, oxeye daisy, fleabane, white clover, red clover, common milkweed.The typical flight season extends from early June to mid-July but will vary regionally with southern parts of the Canadian prairies starting earlier than more northern regions.

Access the Provincial Insect Pest Report for Wk09 for updates for this economic insect pest.

Cultural control strategies for European skipper include separating timothy from nectar sources to avoid attracting adults which will mate then oviposit in the same field.  Another strategy is the removal of cut grass or bales. 

In terms of chemical control, an action threshold of six or more larvae per 30 cm x 30 cm area is recommended to mitigate losses but emphasis should be placed on scouting and managing early instar larvae. If the need arises, chemical control in timothy involves using a higher water volume (e.g., 300 L H2O/ha) to adequately cover the thicker canopy.

Figure 2. Early instar larva feeding along edge of timothy leaf. Photo: A. Jorgensen, AAFC-Beaverlodge.
Figure 3. Larva resting in fold of timothy leaf formed by silken tie. Photo: K. Pivnick. AAFC-Saskatoon.
Figure 4. Larval feeding damage and silken ties on timothy leaf. Photo: K. Pivnick, AAFC-Saskatoon).
Figure 5. In situ camouflaged larvae and feeding damage in timothy. Photo: S. Barkley.

The European skipper was introduced to North America at least a century ago and has moved west and north in its distribution across western Canada even though its area of origin is recognized as Eurasia and northwestern Africa. The initial report of European skipper in Canada is from 1910 and cites it being imported on contaminated timothy seed near London, Ontario. 

Distribution records for T. lineola can be reviewed on the Butterflies of North America website. In western Canada, T. lineola established in parts of Saskatchewan by 2006. In 2008, butterflies were collected near Valleyview, Alberta (Otani, pers.comm.), and in 2015 larvae were observed feeding in the flag leaves of winter wheat near Mayerthorpe, Alberta (2015 Meers, pers. comm.).  Specimens confirmed as T. lineola were collected in 2016 near Valleyview, Donnelly, and High Prairie, Alberta (2017 Otani and Schmidt, pers. comm.) with additional specimens confirmed from Baldonnel and Clayhurst, British Columbia in 2021 (2021 Otani and Schmidt, pers. comm.).

The European skipper was the Insect of the Week in 2022 (Wk10).

European Skipper

This week, European skipper was reported in the northeast of Saskatchewan where more forage crops are grown.

The European skipper (Hesperiidae: Thymelicus lineola) is a diurnal, bright orange butterfly (Fig. 1). The predominantly green defoliating larvae can cause economic levels of damage in timothy. The larvae also feed on other species of grasses and winter wheat.

Figure 1. European skipper (Thymelicus lineola) adults on timothy seed seeds. Photo: S. Dufton, AAFC-Beaverlodge.

There is one generation per year of European skipper but butterfly oviposition or egg laying largely dictates where damage occurs the following summer. Host plants include timothy (Phleum pretense), cocksfoot (Dactylis glomerata), couch or quack grass (Agrophyron repens), perennial ryegrass (Lolium perenne), meadow fescue (Festuca pratensis), orchardgrass (Dactylis glomerata). 

Early in July, butterflies feed on nectar, mate, and lay eggs. Females lay vertical rows or “strings” of groups of ~30 eggs on the inside of grass leaf sheaths, seed heads or on the stem of a host plant. By late July, larvae develop within the eggs yet they remain safely enclosed to overwinter inside the egg shell. Eggs can be transferred in both hay and seed as seed cleaning will not remove all eggs. Early the following May, the overwintered larvae emerge from the shell, crawling up growing grass blades to feed. Five larval instar stages cause damage by defoliation of the upper leaves of timothy.

Larvae are leaf-tyers that spin and attach silk ties across the outer edges of leaves to pull them together (Figs. 2-5). The silk ties hold the leaf in a tight furl enclosing the larva within a leafy tube then it moves up and down the tube to feed. The tying behaviour and camouflaged green body (marked longitudinally with two white lines) make larvae hard to locate when scouting.  Even larger larvae with their brown head capsules are surprisingly difficult to locate because the larva will lie lengthwise, along the base of the leaf fold yet the larva remains very still until touched. When high densities of European skipper larvae are present, leaf tying goes out the window and larvae feed in more exposed areas, often amidst rapidly disappearing foliage.

Adult wingspans range from 19-26 mm but they have bright brassy orange wings with narrow black borders and hindwing undersides that are pale orange and greyish. Nectar sources for adults include orange hawkweed, thistles, oxeye daisy, fleabane, white clover, red clover, common milkweed.The typical flight season extends from early June to mid-July but will vary regionally with southern parts of the Canadian prairies starting earlier than more northern regions.

Access the Provincial Insect Pest Report for Wk09 for updates for this economic insect pest.

Cultural control strategies for European skipper include separating timothy from nectar sources to avoid attracting adults which will mate then oviposit in the same field.  Another strategy is the removal of cut grass or bales. 

In terms of chemical control, an action threshold of six or more larvae per 30 cm x 30 cm area is recommended to mitigate losses but emphasis should be placed on scouting and managing early instar larvae. If the need arises, chemical control in timothy involves using a higher water volume (e.g., 300 L H2O/ha) to adequately cover the thicker canopy.

Figure 2. Early instar larva feeding along edge of timothy leaf. Photo: A. Jorgensen, AAFC-Beaverlodge.
Figure 3. Larva resting in fold of timothy leaf formed by silken tie. Photo: K. Pivnick. AAFC-Saskatoon.
Figure 4. Larval feeding damage and silken ties on timothy leaf. Photo: K. Pivnick, AAFC-Saskatoon).
Figure 5. In situ camouflaged larvae and feeding damage in timothy. Photo: S. Barkley.

The European skipper was introduced to North America at least a century ago and has moved west and north in its distribution across western Canada even though its area of origin is recognized as Eurasia and northwestern Africa. The initial report of European skipper in Canada is from 1910 and cites it being imported on contaminated timothy seed near London, Ontario. 

Distribution records for T. lineola can be reviewed on the Butterflies of North America website. In western Canada, T. lineola established in parts of Saskatchewan by 2006. In 2008, butterflies were collected near Valleyview, Alberta (Otani, pers.comm.), and in 2015 larvae were observed feeding in the flag leaves of winter wheat near Mayerthorpe, Alberta (2015 Meers, pers. comm.).  Specimens confirmed as T. lineola were collected in 2016 near Valleyview, Donnelly, and High Prairie, Alberta (2017 Otani and Schmidt, pers. comm.) with additional specimens confirmed from Baldonnel and Clayhurst, British Columbia in 2021 (2021 Otani and Schmidt, pers. comm.).

The European skipper was the Insect of the Week in 2022 (Wk10).

European Skipper: Invasive to Established in Western Canada

Even damaging insects can be beautiful! In fact, showy invasive species often are detected earlier compared to smaller, less colourful, or more cryptic or camouflaged species. The European skipper (Hesperiidae: Thymelicus lineola) is a good example of a bright orange butterfly large enough to easily spot on the wing that is diurnal (Fig. 1, 6). Unfortunately, the predominantly green larvae are defoliators capable of causing economic levels of damage in timothy but they also feed on a number of other grasses and winter wheat.

Figure 1. European skipper (Thymelicus lineola) adults on timothy seed heads. Photo: S. Dufton, AAFC-Beaverlodge.

There is one generation per year of European skipper but butterfly oviposition or egg laying largely dictates where damage occurs the following summer.  Early in July, butterflies feed on nectar, mate, and lay eggs. Females lay vertical rows or “strings” of groups of ~30 eggs on the inside of grass leaf sheaths, seed heads or on the stem of a host plant. By late July, larvae develop within the eggs yet they remain safely enclosed to overwinter inside the egg shell. Early in May, the overwintered larvae emerge from the shell, crawling up growing grass blades to feed. Five larval instar stages cause damage by defoliation of the upper leaves of timothy. Adult wingspans range from 19-26 mm but they have bright brassy orange wings with narrow black borders and hindwing undersides that are pale orange and greyish. The typical flight season extends from early June to mid-July but will vary regionally with southern parts of the Canadian prairies starting earlier than more northern regions.

Larvae are leaf-tyers that spin and attach silk ties across the outer edges of leaves to pull them together (Figs. 2-5). The silk ties hold the leaf in a tight furl enclosing the larva within a leafy tube then it moves up and down the tube to feed. The tying behavior and camouflaged green body (marked longitudinally with two white lines) make larvae hard to locate when scouting.  Even larger larvae with their brown head capsules are surprisingly difficult to locate because the larva will lie lengthwise, along the base of the leaf fold yet remain very still until touched. When high densities of European skipper larvae are present, leaf tying goes out the window and larvae feed in more exposed areas, often amidst rapidly disappearing foliage.

Figure 2. Early instar larva feeding along edge of timothy leaf. Photo: A. Jorgensen, AAFC-Beaverlodge.
Figure 3. Larva resting in fold of timothy leaf formed by silken tie. Photo: K. Pivnick, AAFC-Saskatoon.
Figure 4. Larval feeding damage and silken ties on timothy leaf. Photo: K. Pivnick, AAFC-Saskatoon.

European skipper (Thymelicus lineola) was introduced to North America decades ago and has moved west and north in its distribution across western Canada even though its area of origin is recognized as Eurasia and northwestern Africa. The initial report of European skipper in Canada is from 1910 and cites it being imported on contaminated timothy seed near London, Ontario.  Eggs can be transferred in both hay and seed as seed cleaning will not remove all eggs.

Distribution records for T. lineola can be reviewed on the Butterflies of North America website. In western Canada, T. lineola established in parts of Saskatchewan by 2006. In 2008, butterflies were collected near Valleyview, Alberta (Otani, pers.comm.), and in 2015 larvae were observed feeding in the flag leaves of winter wheat near Mayerthorpe, Alberta (2015 Meers, pers. comm.).  Specimens confirmed as T. lineola were collected in 2016 near Valleyview, Donnelly, and High Prairie, Alberta (2017 Otani and Schmidt, pers. comm.) with additional specimens confirmed from Baldonnel and Clayhurst, British Columbia in 2021 (2021 Otani and Schmidt, pers. comm.).

Cultural control strategies for European skipper include separating timothy from nectar sources to avoid attracting adults which will mate then oviposit in the same field.  Another strategy is the removal of cut grass or bales.  In terms of chemical control, an action threshold of six or more larvae per 30 cm x 30 cm area is recommended to mitigate losses but emphasis should be placed on scouting and managing early instar larvae. If the need arises, chemical control in timothy involves using a higher water volume (e.g., 300 L H2O/ha) to adequately cover the thicker canopy.

Figure 5. In situ camouflaged larvae and feeding damage in timothy. Photo: S. Barkley.

Interesting fact: In Europe, Thymelicus lineola is commonly referred to as the Essex Skipper.

Host plants: timothy (Phleum pretense), cocksfoot (Dactylis glomerata), couch or quack grass (Agrophyron repens), perennial ryegrass (Lolium perenne), meadow fescue (Festuca pratensis), orchardgrass (Dactylis glomerata).

Nectar sources for adults: orange hawkweed, thistles, oxeye daisy, fleabane, white clover, red clover, common milkweed.

Resources:
• Alberta Forage Manual https://open.alberta.ca/publications/077326082x
• Excerpt of European skipper pages from the Alberta Forage Manual: https://drive.google.com/file/d/0B_1NQ60rRZGTRkE4R0dwSllSbWc/view?resourcekey=0-FcL4jcaeBHijt50EtEMxsg
• Information from Butterflies of Canada posted at: http://www.cbif.gc.ca/eng/species-bank/butterflies-of-canada/european-skipper/?id=1370403265612
• Butterflies and moths of North America: http://www.butterfliesandmoths.org/species/Thymelicus-lineola
• Health Canada Pesticide Label online search tool (for desktop): https://pr-rp.hc-sc.gc.ca/ls-re/index-eng.php
• Health Canada Pesticide Label Mobile App: https://www.canada.ca/en/health-canada/services/consumer-product-safety/pesticides-pest-management/registrants-applicants/tools/pesticide-label-search.html
• WCCP Guide to Integrated Control of Insect Pests of Crops: https://www.westernforum.org/WCCP%20Guidelines.html

Figure 6. Adults in copula on timothy. Photo: S. Barkley, Brooks, Alberta, Canada.